数学史研究

第4巻 第2号
(通巻 30 号)
1966年7月～9月

目次

論文
関流と最上流の論争 ... 下平和夫 1

寄書
算額復元 .. 柚原秀夫 18

資料
碓氷峠の数字の碑 .. S. Y. 25
覚え書き2題 ... O. H. 26

講座
ギリシアの作図三大問題 ... 下平和夫 29

編集後記 .. 41

日本数学史学会
関流と最上流の論争

下平 和夫

関流の藤田定寛（1734～1809）と最上流の流祖会田安明（1747～1817）との論争は和算史上有名な論争である。その歴史にも論争の生じた例は数多くあるが、そのほとんどが学問的論争とはほど遠く感情面に近づくもので、一門の面目にかかってというような従順に従わなければならないような場合が多い。

自分の意見が訂正されたとき、それを素直に受け入れた場合はたいてい師弟の関係が生じている。それに対し、口を揃った者同士での意見の交換はそのほとんどが感情が先に出て、けんか別れが多いようである。

本橋惟義（福田理軒）（1815～1887）は始め武田真元（？～1849）の門人であった。兄の福田復（金輪）（1806～1858）の弟子竹林秋善、本橋嘉貞他数名により淡花の天満神社に弔文を敬意した。そのときさらに頼として、竹林と本橋両名のすすめにより惟義は問題一条をつけ加えた。（天保7年秋、1836）この問題が本橋兄弟の師である武田真元の目にとまる所となり、兄の金輪に、この問題は邪魔であると言ってきた。惟義はこれに対し反論し、ついに意見を互に入れることができず、武田真元に弟子の惟義より破門を申し入れた。この反目は今ではあり、武田と福田両家の争いとなった。これが世にいう二田の争いであるが、これは師弟で争うという特殊な場合である。

武田真元は、坂正永および会田安明の弟子である村井宗矩（1755～1817）の弟子でも、よく勉学を励み一家をなすに至ったのであるが、福田理軒（惟義）もまた一家をなしたのはこの反骨精神からであろう。

以上は遠藤利真著『増修日本数学史』（昭和53年、546）によるが、本橋惟義編『所拝淡花天満神社算題一事』を著した写本（下平家）に、その事情がくわしく書かれており、それに関して意見を述べた武田と本橋、武田小出修喜（1797～1865）の間の書簡も収録されている。

大森有吉（1894～1958）旧関本の中に『天元算法記』と題する写本がある。これは本多利明（1744～1821）および安室直円（1732～1798）に師事した坂
このようにして広部は三浦教忠が批評をしている。最後に

日付：大正二年〇月日

文政二年十一月十七日
つきでも旧式な方法を保持する必要がないからである。これはもちろん、私たちは何故大学の出身であるというのと全く似ている。各大学の数学科にはおのずと取扱う問題に特徴が出てくるもので、和算における流派もこれと同じだと思われる。和算における代数記法では、ぜひ三体流が他の流派と少し違う程度で、あとはあまりその差異は認められない。この事をまず念頭においていただきたい。

会田安明は延享4年（1747）2月10日に山形の七日町で生まれた。宝暦12年（1762）数え年16才の時に十日町の岡崎純兵衛実之の門にいった。岡崎の道場は書術などの武術を教えるかたわら算学も教えたのであるが、会田はまたたくに算学をマスターし、師範であった。岡崎安明は中西流の逸見十兵衛、直指揮破流の中村政勝（算法天元播読集の著者）に師事して算学を学んだ人であるが、それほど力のあった人ではないようである。

明和4年（1769）9月、数え年23才の時に、会田安明は養親の志を抱いて江戸に出た。この明和4年という年は、久留米藩主有馬顕政（1714〜1783）の著した書『拾淙算法』の出版された年であり、会田安明はこの算書に影響される所大なるものがあった。

江戸に出た安明は、旗本鈴木清左衛門の家にいる。鈴木彦助と称し御用読をつとめた。すなわち関東一円の土木、水利、治水工事の現場監督をしたのである。同じく御用読をつとめていた中に神谷喜左衛定がいた。神谷定定は藤田定定の弟子であり、藤田定定は関東の中心人物として数学家の間では知らない者のはど実力者であった。しかも藤田は有馬顕政の庶流のもとになり、自分の著書に『精要算法』という名を有馬よりもらっている。会田が神谷を介して藤田に弟子入りしようとしたのは、向学心に燃える彼にとって当然のことである。藤田定定はこの『精要算法』（天明元年1781）により、その名はすますます高まっている。会田にとって（会田ばかりでなく後世の和算家すべてが）この『拾淙算法』と『精要算法』とを実力養成の良教科書であった。

だが、神谷定定の紹介は従来に終わってしまった。せっかく縁結びの役を引き受けたのに、神谷にたのんだ会田が藤田とけんか別れをしてしまうのである。そのいきさつは、神谷の著した『解惑弁証』によれば、天明元年12月すなわち『精要算法』発刊の年に会田安明は芝の愛宕山に算額を奉納した。彼によってこの算額は江戸にてから最初の研究発表である。その算額が二人の話題となって、藤田は会田に、「算額の術文に誤りがあるから、その誤りを訂正したら来なさい。」と言ったという。会田はそれに従わず、藤田の弟子を立することを断念した。

芝愛宕山に掲げた会田安明の算額の額面は、寛政元年（1789）に発刊された藤田貞貴・嘉言父子の『神煙算法』に収録されている。『神煙算法』は当時さんかに神社仏閣に奉納された算額の問題を収録して刊行した算書で、『精要算法』と同様に世間から非常に歓迎された算書である。これによれば、愛宕山の問題は不知房数の問題で、会田の創意が表われているが、「4200備する」というのが「四千二百位取進む」発ちから「4200けたまるる」と語を誤って使ったことに対する藤田の忠告であった。

『神煙算法』の下巻にはこれに続いて、鈴木安且（会田）のこの問題に関する訂正として、天明4年正月に古川氏治（幕府の勘定奉行）に、会田の算負をとる。1758〜1820）が、天明5年3月に神谷定定がそれぞれ自己の解法を表示している。これは恐らく会田の顕の隣に並べられたものであろう。

とにかく会田と藤田の初対面は意外な結果をもたらした。会田が藤田の名にかかれて神谷のたすけを借りて面会した所、藤田の言葉は「貴殿が奉納した愛宕神社の算額の術文に誤りがあるから、話はその誤りを訂正してからにしましょう。」というものであった。初対面にいきなり自分の欠点を指摘されて会田は怒った。自分を侮辱するもののいられよう。

会田と藤田の面会のときの感情の移り変わりのいきさつは以上のようなものであったろう。学校の先生が生徒を指導するとき、いきなり誤りを訂正せず、「この所に誤りがあるから、もう一度よく見なして見なさい。」というような指導はよくされるものであり、それが適切な指導であることが多い。『精要算法』の出版によりすっかり高名となった藤田である。門下生も多い。藤田がまだ無名であった会田の掲げた算額を目をつけたことだけでも会田にとって名誉あることと思われざるをえぬ。藤田は会田が将来見込みのある数学者だと思ったのである。それだからこそ会田の顕面論を始めに欠点を指摘したのであろう。会田は藤田の真意を解せず席をたった。
この対面が思わぬ方向に発展したのは運命のいたずらであろう。会田安明はくやしさのあまりいろいろ考えてみた。いままで、数学では誰にもひけをとりたくないと思ってきたし、事実自分を打ち負かすほどの算家に出あっていない。そういう焦興が藤田の言をすなわち受け取らなかったのであろう。会田の結論は次のようなものである。それなら海内隆一の名著といわれる『精要算法』に触れよう。あるいは正すべき欠点があるはずだとして、『改精算法』を刊行した（天明5年1785）。『改精算法』の原稿は、応天明3年には完成している。このことは先に恵文①にて述べていたが、北海道士院にはこの原稿が3種あり、しかもどれもが何回も失がれられ、はり紙が見られ、何度も何度も推考に推考をかえられようが見えている。この原稿を会田は神谷に示した。神谷は困ったことになったものだと思った。しかもこの原稿が刊本になってしまったときに、自分の立場がまったくなくなってしまったことに気がついた。自分の部である藤田に会田を紹介するのが失敗するし、その上会田が自分の部の著者にしろをつけるように著書を発刊するというわけではない。神谷は自分の立場をはっきりさせるために、思い切って友人の悪口を書いて会田とは何の関係もないということを示さなければならなかった。それが会田安明を刺激して論争が先鋭化し、最後には悪口批言の言い合いとなってしまったのである。したがって攻撃を受けたのはかえって会田安明の方であり、藤田と会田の間では論争は行われず（藤田はこの事件をほとんど無視していた）、会田対神谷という形で争ったのである。上流を称するようになったのは、神谷方に有力な算家である安島直円がバックアップするように考え、会田は孤立無援、闘争体と争う気持ちとなり、自ら流派を唱えるようになったのである。山形最上旬の産であることより最上流と称した。
藤田定義としては、惜しい人物を誤解により弟子にしたかったという気持ちがあったかもしれないが、この事件にはほとんど関係していなかった。ただ『非改精論』と『非解感算法』という著書を著して弟子に示している。会田を特にひどく攻撃するわけでもなく、この問題はこう考えた方がよかったという程度のおそらくかな書きぶりである。この2著（藤田の自筆）は現在日本学士院に収蔵されている。この2著の著作の年代は不明であるが、
『算数古今通覧』を論争の中に入れるのは筋違いの感がないでもないか、それを論争の中に入れた理由は後述する。『算数古今通覧』を論争に含めるとと他にも入れなければならない算書がないわけでもないが、彼は写本である故入れないこととする。

とくにこのことの表のように、おぼくにもあきもせずに算書の送り手をしたものです。関連の方は藤田の著である『精要算法』『非経若論』『非解感算法』をのぞいてあとはは神谷定定の著であり、最大上はすべて会田安明の著である。はじめに述べたように会田は終始藤田を尊敬しているのであり、論争は神谷と会田との間で述べることを知らないゆきがかり上だけの事で争われたという事を頭においてみていただきたい。

『改精算法』の序に次のことがいえる。「休暇の日は数学の勉強のためしばしば演算を忘れた。燈火をともして星より夜にいたるまで勉強すること二年余かった。鱗黴の持っている実に深いを求むも組合師で、しかし、自分が従来に生じているのはいまだ良師めぐりをあわせず、単なるためめしむなことのあるまたとだ。ところが最近精要算法という算書があらたにおろされており、これを解くに千載未発の奥義をひらび、算者の伝来ずる妙法をきわめて

これが藤田の遺留した式法を持っている者人海内でただ一人である。「（原文は漢文）をたおせずや、しかしあ，默认にとらえなと、この書の中に千本の中には一つや二つのかずや誤りもないわけではない。そのような箇所を指摘してみた。改精算法と名づけたが、門人が出版することをあらためてすすめるので、先輩を非議するきらいがないわけではないけれども、門人の難を聞いてやらないわけにもゆかないので、板木には、少しは後輩へのたけなをしよう。」

日本学士院編『明治前日本数学史』第4巻P.490〜504にも、このことばくくも述べられている。その中に会田安明が御師内海と公平に贈った書状およびその評があるのでこれを紹介する。

藤田精平と申す者有り、此人天地開闢以来の名人にて御師候。精要算法と申して出候。此書前代に無し、本源之術而もにて、至し宜数出来仕候。昔より当時迄数百卷之書の内にて一の算書にて、江戸表にても相成候者一人も無之候。然所指者悉く相改め、其内には悪数を多く

有之候間、専又著者改精算法と申算者を開板いたし候様にて、当世取調

有之候、此書出来候得ば、著者候は日本一之算者に相成候申（中略）。著者一般より習候之算術は黒く一二分通つて取るに不足、八九分通つて皆自ら工夫して候所の妙術に御師候問、当世江戸表にて算者に掛合候節は、師をして自ら発明いたし則流義無し、自ら工風の術にて、著者流義の由に世間の算者に掛合候申。

辰（天明4年）九月廿五日　彦助

与平治　篤

とあり、この手紙の解話が次のように続く。

これこそ安明の心からの声であろう。当世の一一人藤田貞貞を打ちまかせば、自分が天下第一人者となり得べしとの希望を燃やして、改精算法を公にしたものを見るべきであろう。己れを高くせんにために、ことさら彼を持ちあげたを見べきでなければならない。かくのごとく、始め安明の態度は謙遜で公平であったことは、特に記憶してみる必要がある。それが感情上のものからしむ変化、互に悪言を交換するに至ったのは勢の然らぬ候所、誠に飲むべき所である。

この事件は会田安明にとってまことに不幸なでき事であるとも考えられるが、この事件により会田安明は関連の誰とも負けないと必死に切磋琢磨し藤田定定者と並び称される立派な算家になれたのであり、一方関流でも最上流よりつねに攻撃されているのでであるからばややするわけにもいかず、日本中の算家に研究の機運を与えるとともに、数学を知らない者にまで数学への興味を持たせる結果となったことは大変喜望である。

とくに『改精算法』が出版されて、神谷定定は『非経若算法』を対抗上公表した。この序の中に次のことと云っている。

改正ズールノシテオーニヒナリを、掲載ソノフクノノカシテ、図書ソノハ恋者ニシテ、訂正ソトメ、アミス、ソリハアミスアミスソ川門ノ品ハ非ノヲ第ハベアミス。其ノ通則ズールノ皆非テリ、精要ノ一ノ儀ノ曖昧ズールノ非ノヲ、此書世ノ行ハレバ、正法敵法ヲ覆ハルノヲミラズ、後世初学ノ為ハ皆害アラレテ、予亦精要ノニシテ、改あらかずノ非ノヲヲ記ミテ世ノ広メントス。
すなわち「改精算法」の序で会田が「精要算法の誤りをそのままとすれば初学の害となる」と言ったことはそのまきを用いて、神谷もまた「改精算法の誤を引用すれば初学の害となる。精要算法は正しい」と言ったのである。神谷はさらに「解感弁訶」で次のように会田をくび踊らした。

「論述ズル所、安明独学ニハテ計算ノ本意ヲ否シ、皆孫ヲ設ヲ精要ヲソシル。故ニ足ヲ正シテ非改精算法ヲ著ス。後復安明改論ヲ著ス。其書其論ヲシテ大ハ計算ノ本意ヲ失ス。用ベキヲ誤シ、其後足解感算法ヲ著ス。其書非改精算法ヲ著シ、皆孫誤信じ、可なり誤。今数学ヲ再スル事ヲ不処シ、上古ノ道人ト称スル者ヲ皆潰滅トシ、己ヲ無知妄作ヲ以テ最上流ノトシ、自転ヲ代ヲ在先者ヲ称シ間々人ヲ誇サムズルニ至ル。」

会田への攻撃はこの「解感弁訶」にいててさますますひとどおり、『非改精算法』では「懺＝安明改（神谷の事ヲ著シテ）糾正ヲ来ス、予（藤出）＝従ヲ数ヲ学ニコトヲ誤フトイヘド＝故フリト不許＝」とあったのが「解感弁訶」では、「懺＝安明改（神谷ノ学ニ著シテ）糾正ヲ来ス、予＝従ヲ数ヲ学ニコトヲ誤フトイヘド＝故フリト不許＝」である。懺＝安明改（神谷の事ニ著シテ）糾正ヲ来ス、予＝従ヲ数ヲ学ニコトヲ誤フトイヘド＝故フリト不許＝。会田が藤出のことを去ってさますますひとどおりをくび踊らした。

会田は「非改精算法」に対し「解感弁訶」を以て応じた。序文の中に取り挙げ、被＝あら許＝精要ヲソシテハルトクスルも。又ヲ数ヲ設スルも、題解ヲ改ヲ答ヲ異＝ストイフヲ以テス、アヲ意ヲ好シ。通ゼニ載セラベ則テ改メタルコトヲ得ズ。」（原書は漢文）という変更を最後に「アヲ議ヲ成ラ知ヲ開柳＝約術不善ナルコトヲ、見＝以テヲ惟ヘバ、論ノズルモ亦不益ニ似タリ。然レモ其ノ書書＝世＝行ハルレバ、則＝後＝初＝学＝害＝少＝カラズ。故＝足＝可＝テソシ＝其＝非＝ヲ言フヘバ。」（原書は漢文）と述べ、神谷の『解感弁訶』があまりにげしく会田を攻撃するのに対し、会田は『算法鄙如』をもって答えた。

又乗（カノ）用ハ非改精算法ヲ著ス。其書＝論述ヲ盛テ不善ニアリ。故ニ亦解感算法ヲ著シ以テ其ヲ不善フス。於＝精要ヲ中ノ元論＝足＝タシテ論
どれほど力をつけてくれたかは会田自身が一番良く知っている所である。
『精要算法』の評は次の通りである。
評曰、此書は安永八年春藤田喜平定義著所なり。其凡例曰 XIV、此書は嘗々省々文義ヲ約カ音樂ト云フ。其文為ヲ見レバ駅古代ノ長文ヲ引替ヘテ大ヒ益アル簡文ナリ。……此書は古今ノ勝レテ可とな考フ著者ト海内ニ行レテ、定義ノ遠流ナル事へ皆知ノ所ナリ。因テ定義ヲ譲テ海内ニ一人ト云ヘリ。宜哉、閑学ヲ初ト其他五君ノ仏書ヲ模定義ヲ及ブ者ナシ。予ガ書（此書ヲ存前通覧）ヲ見テ明ヲ如カ知ルベシ。此書是行レテ何師様ヲ初学ヲ敬シテ成テ、今ノ算学者各ナ上達セ他ハ定義ヲ大誇ナリ。

『算法鷹如』ではこれぞ何様のものか、ほとんど同時に出版している本書でこれまで述べておきたいのは少しも矛盾していないので、これが真実である。巻之四の中で、顕面隠を替えたことで有名人藤田定義・嘉言父子の『神算算法』（昭和元年、1789年）を評しているが、これはあまり何んでもない。この巻之四の後半部に至流算法神算明論という節を設け、巻之四と関流とで行われた顕面隠を収録している。すなわち、藤田定義の『算法神算』に対抗して掲載したものである。

この算術神算明論中にある問題で、寛政6年1月に刊行した東京の富士山堂の市井書を参照してをかげた市野金助成義（会田安明の高弟、四天王の一人）の問題は、「関流の学士を助ますために掲載された問題である。この第2問は次のようである。

今有如円円内隔二関東東西南北之四円。只云円径一十二寸、西円径五寸、南円径六寸、北円径九寸。問外円径何。

ところがこの問題と似て似た問題が、『神算算法』の増補版『増补神算算法』に掲載された。
公約数がないように改めたのであってたいした違いはない。同様に「精要第二十二」と「改精第二」と
\[95x = 45y + 15 \]
\[112x = 38y + 6 \]
\[x, y, z \text{は自然数} \quad \text{(精要算法)} \]
\[97x = 45y + 12 \]
\[113x = 38y + 3 \]
\[x, y, z \text{は自然数} \quad \text{(改精算法)} \]
である。これに対し、
評日、是亦前値ノ意ト同ジ。精要ヘ等数ヲ有ル者ヲ施テ初学＝示ス。改精
ヘ等数ヲ仕ヲ以テ者ヲ倉ヲ、其術ヲ能シテ心得ヲ与ヘ其術等ヲ帯
シテニ無益トナル、両書共＝弐術＝不有ヘ不及論。
『精要算法』中巻の第25問は、「仮測で1000間（6000尺）ある距離
を1丈3尺5寸の竿で測れば7尺5寸余り、1丈4尺7寸の竿で測れば5尺
1寸余り。この距離はいくらか。」というものであるが、『改精算法』第7問で、「2種の竿を使うのはおかしい。竿は1種でも解が得られる。」と書かれる。
すなわち,
\[2 = 13.5x + 7.5 \]
\[2 = 14.7y + 5.1 \]
\[2 = 6000 \]
\[x, y, z \text{は自然数} \quad \text{(精要算法)} \]
を13.5x + 7.5 = 6000を第一術、14.7y + 5.1 = 6000を第二術として解を得ている（改精算法）が、これは会田の勘違いである。会田は始
めにこの誤りに気づかなかった。
とにかく神谷の攻撃があるみにすきさかじかため会田も感情的となり、
数学としての学問上の論争にならなかったのは残念である。したがって、彼
が尊敬している関新浄（1642〜1708）に関してして、『豊島算経評林』
の中で関新浄の『談義』を引用して、「関新浄が談義を著し云ふに曰く『関新
鳴学文化なるものは、算術に於ては巧みなれども、其志志に於ては、或人不
仁になり。己れが名を揚げん為めに古書を考へ捨てに於てをや。不仁の人
を

-14-

-15-
から10年後、会田はこの世を去った（71才）。波乱万丈の生涯である。
会田の没後3回の延べ、門弟一同が集まり会田を為した算木（算子）を埋め、書を建てて算子塚という。亀田直秀の撰文および書である。
この碑文は「会田先生関東大略之巨業而本邦算氏之中興也」とあり、開流との論争は、彼の生涯の中でもっとも重要な事件であるのに何も言っている。会田としては関田との事件にふれたくなく、生前にそのことを弟子たちに言ってあったのである。（先に述べた渡辺一の書状より見ても、会田が弟子たちに藤田の偉さを言っていたことがわかる。）この算子塚を建てたときに、渡辺一の門人斎藤一弥（1775-1844）は碑前に「讃揚算法」を掲えた。これは齋藤の問題で、渡辺と斎藤の工夫になるもので、ある意味では開流と最上流で争われた管の問題の終結符でもあった。（注）

(注)
① 本誌第2巻第3号通巻15号「改精算法の原稿について」
② 本誌の前身『和算研究』第5号、および『和算学の文献集』(1)に転載された著者公の「奉範理由の変更——主旨として寛政以前の算術について」
③ 付山喜書『関孝和』恒星社昭和24年より転載。
④ 本誌第2巻第6号（通巻18号） 『精要算法の用の用』 1966年8月13日
算額復元

桑原秀夫

復元の定義
算額を写し取りに大体次の3つの方法があるように思う。
第1には、社寺に掲げている算額を原稿の通りの寸法、図形彩色、文法等も全く原稿通りに写し、額の構造出来れば材質まで同じように作ることを「復元」という。

但し原稿が既に失っているものを文献によって、こうであっただろうと想像して作ることも「復元」と言ってよい。

第2には、実際に製額はしないが、而し図面の上で原稿と同一か又は縮尺によって、原稿通りの図面を書くことを「復製」という。

第3には、図形及び文章に重点を置き、原稿の構造寸法には係わらず、ただ図形及び問題答及び術文等を記録として書き留め置くこと、之を「復写」という。

以上3つの呼称は、私が現在行っている方法を私だけの区分で設けた、呼び方である。

之はいずれ学会の会議とかで決めていったければ大変幸いと思う。

復元の意義
之は申すまでもなく、和算家がそれぞれの目的で社寺に掲げたものであるが、今日では明治以前のもののは100年以上を経過ごし、切角を拝見しても内容がさっぱり判らぬものが多い。

私は多少問題があるかも知れないが現存算額は全部日本数学史上大切な文化財と考えてある。

算額の内容により之が和算発達の途上に於ける重要な論争を引き起こしたようなものもあり、又完全地方的で単に算額奉納の風潮に乗って掲げたものも現存してある。

最近私が有力な神社総代に頼み込んで掲額以来百数十年目に初めて下に隠されてもらった、兵庫県伊丹市諸名野神社奉納の山田権楽斎の算額は、その前文を武田真元が書いているが、その文章には「…近来社寺奉納が流行し、徒立ち神聖な名を売ることは誠にけがわしく、而してこの山田氏はこうした売名の徒ではない…云々」
というようなことが書いてあるところを見れば算額家自身もその当時既に反省はあったものと思う。

而して和算が廃止せられて100年、今日に到ってみれば、如何なる額にせよ私はそれぞれ意義があり、その当時の何物かを語る重要な文化財と考えてある。

それであれれば之を復元すること、即ち更に旧額の寿命を1世紀近き将来まで延すことは決して意義のないことではない。

復元の為めの努力
算額は美術品でも骨董品でもない。之がもしも美術品であり、例えば奈良の秋篠寺の仏像天の如き優秀なる形態又は、英一楽の絵画というような、高度の技術を要求するものであれば復元も模写も容易なことではない。

而して運算者はその中に画いである幾何図形及び算題が漢文で書かれてあるだけのものである。

図形は難しいものでも今日のコンパス定規を使えば容易に出来る。文章は漢文であり、毛筆で書かれておるが、私は習字はあまり上手ではないが他人に読んでも大いに可なりの程には書けるつもり。

さすれば之は誰れにも出来ることがあるのではないか。製額の作業は亦難しいものではなく、普通の指物大工を一人工を要すまい。

とこの意味で、已に消えきった額を見れば之を復元するのは数学史を研究するものの当然の義務ではないかと考える。

但し之は私個人の考えで他人に押しつける考えは毛頭持っておらぬが、私に共鳴してほしいとは考えてある。

浦和氷川神社の算額復元
今年の1月13日、私は友人の斎藤弘之君と二人で同神社を訪れ、神棚に掲げられてある算額を拝見した。
額の下に解説の紙が貼られておって「浦和市に現存する唯一の算額」と書いてあったが、いくら眼を張っても、已に額面は風化して上の方にわずか
に数形の根強い力が残っており、
その後4月3日に再び同社を訪れたが、今度は携行して行った画筆に指を
用い、何となく一歩も農民では見ることの出来ない額の内容を読むこ
とに成功した。
しかしこの1月から4月までの3ヶ月は無観כに過ごしたのではない。
私は熊谷市の野口泰良氏に手紙を送り、埼玉県下のことであるので、もし
永川町長の内容が判らぬかどうかを御伺いした。
早速御返事をお送りいただき、大谷恒慶先生が書き留めておられたものも、
私の方を入手した。
一方浜田弘之君は、宮司厳正二氏や永川町長の顕仁者中村光信の後事の
方にも出逢って裁判復旧について皆さんの御意見をとりまとめて度々私の方
に連絡してくれたのである。
それと同時に4月3日にはちゃんと新しい白木造りの額まで用意しておっ
てくれたのであった。
その時の私の啓信日付は4月6日までであったので止むを得ず大きな額を
新幹線に持ち込んで、西宮市のご宅まで持ってかえった。
こうして自宅で下書き、本書、図形、彩色等を楽しみながら書き上げて幸
便に托し5月上旬に再び東京に送った。
間もなく浜田君の連絡により6月4日に氷川神社で奉納式があることを通
知してくれた。
【資料】

礦水峠の数字の碑

礦水峠にあって、数字ばかりで出来た歌
八万三千八百六九三三四七
一八二四五二四五六百夜億四百
（山道は寒く溼んがれた一歩に度ごとに白く夜白く覆う）
を書いた碑有者率、平山歩先生の「東西数学物語」にも載っているので、
よく知られている。それで一度見ておこうという物好き人もあるかもしれません
ないので、その道案内を書いておこう。私と皆さんはじめ見て見物したから、
忘れないようにこれを書いておくわけである。

中軽井沢駅から礦水峠行きのバスは大体1時間ごとに出る。（現在は9時、
10時、というようなちょっとの時刻に出ている）このバスは途中軽井沢駅
通り、礦水峠までおよそ3分ぐらいかかる。そのバスはまたちょうどその
時刻届に行くので、同じバスで帰るとすると、向いに27分ぐらい居ら
されることになる。熊野神社の所と数字の碑を見るには、これでは少し時間
が足りないので、1時間近くのバスで帰るとよい。これだと1時間27分あ
ることになる。（時刻によっては1時間17分ぐらいの時もある。）帰りは
25分ぐらいで軽井沢駅後に帰着する。

礦水峠のバスの終点は熊野神社のすぐ前であるから、バスから降ったら、
すぐ左側の石段を上上げていく。算盤は社務所の隅りの社殿に外部からよく見
られるように置いている。

これにくると、数字の碑はわかりにくい。土地の人は弁慶の碑といっ
ているから、数字ばかりの碑といっても通用するか、聞く場合には弁慶の碑
といった方がいいようである。

数字の碑は神社の傍にあるのでなく、すこし離れれている。バスを降りて、
その進行方向へもう少しこの歩くと、右側に山を下って行く道があり、その次
に左側に山にならの道がある。それを通りとして数歩で、左側に碑が二つ並ん
で立っている。
その通りと言えるのは、右側に霧氷温泉ヘイクイングコースと札の立っている鵲である。もこの中仙道である。

それをなめてしている小道で、右側の木に「山火事用火」という赤い札がついている。そのすぐ手前に右側に続く細い道がある。熊谷の東にある小道で、犬吠きを訪れると道であることがわからないくらいである。その小道をたどっていくと、すなわち犬吠きに回って、数字の碑の前に出る。碑は石造りで、細長い石の前面に囲って、1メートルに足りないくらい小さなものである。

小道は相当に長いようであるが、位置からいうと、碑は小道の入口から数メートル先の真下にある位置である。だから近道をしたければ、小道の入口から数メートルぐらい先の斜面をすべり下りれば、碑のそばに出ることができるわけである。

なお、碑のまわりは開けているが、その外わには、木がしきっているから、暗くても写真を撮ることは多少困難である。やはりフラッシュを用意した方がよい。

覚えて書き2題

0. H.

[1]

林鶴一博士は『幾何学の数理トノ語源ニ就テ』という論文の中で、柴田清実の『幾何学』につけられた中村正直の序文に、幾何はgeometryのgeoの音に当てたものであると述べていると言え。その文を引用している。そして、その後に狩野亨吉博士の『數学文集巻六幾何学序』がgeoトノ関係ニ呼言及無二物トナ」という手紙の一節を記載、幾何学序に幾何とgeoとの関係がないというのを証明している。

中村正直の『數学文集』を読んでいるが、確定的なことは言えないが、それに書かれている幾何学序というのは、柴田清実の『幾何学』に書いた序とは別ものであるかもしれない。

柴田の『幾何学』はロビンソンの書物の訳であるが、宮川保全が訳したヘンリ・プラッドの『幾何学序』なる書物にも、やはり中村正直の序文があるが、これとは幾何とgeoとの関係は書かれていない。『數学文集』に載せられた『幾何学序』はあるいはこれなのでしょうか。中村がこの冊子にもまだ幾何学の書物を書いているかもしれないが、それは『數学文集』に紹介されることが多いである。

柴田清実の『幾何学』についての『幾何学序』（和本）と『幾何学序後篇』（P.149-288）だけで見てもわかるが、萩野公斎氏載本に『幾何学前篇』（序、縮略、目録6ページ、本文P.1-148）があるが、前編後篇に接続する。そして、前篇の本文は幾何学序からはじまっている。この書の出版の経過は縮略の中に見える。

[2]

『算術新書』はひじょうな好評をもって世に迎えられたので、何回も版を重ね、異版がきわめて多い。内容に変化があるわけではないが、異版そのものに大きな変更もたらなかった。ところが最近やや興味のある現象に出会ったので、それを報告しておきたい。

『算術新書』は巻1から巻5まで、5冊に製本されているものと、1冊に合本されているものがある。これは普通のことであるが、この巻と下平和氏の叢書に巻1、2の合本のことを知った。半田氏で、巻には『算術新書全』とあり、序も完備し、目録には巻5まで内容が挙げられている（この点、他のものと同一である）。しかし、内容は巻2までもしかない。しかもおわりには天保二月二日発行の刊記がある。全体から見て製本はもとのままのようである。それから『算術新書』は巻3以下に別冊巻2までを離して発売することがあったもののようにも考えられる。巻2のあとには内容と構成次の節、前は比例の関係を使うものであり、後者はピタゴラスの定理を使うものであるが、いずれもソーバンを使って問題を解くものである。そして第3巻から天元術と点貞とははじまる。つまり『算術新書』は内容によって、巻1、2と巻3以下とに2分されているのである。したがって、
講座

ギリシアの作図三大問題

平和夫

テオクリトス、エーフラテス両人の三日月氏土著に栄えたパピリオスの文化、
ナイア河畔のデルタ地帯にピラミッド風の建物を築いたエジプトの後をついて、西洋
数学者の基礎を築いたのはギリシアである。ギリシアは多くのギリシア（都市国
家）によって成り立っていた。その中でイオニア人のアテナイやドリア人の
スパルタなどがこのギリシアの中で有名である。

ギリシアの数学はイオニア学派より始まる。この学派の創始者であるタレ
ス（Thales –624（640）〜 –546）は、ギリシア七賢人の一人でミレブ
に生え、商用でエジプトに往たり、エジプトの神官より数学を学んだがすぐ
にその神官より数学ができるようになり、ピラミッドの高さをその影の長さ
より測定してアパシ・エゴス王に驚かせたという。彼らは若年時代は商人として過ごし、
後に数学者、天文学者、哲学者として活躍した。体験観測としては、585
年5月28日日の食を予知したことが有名である。現代タレスの定理と呼ば
れる相似三角形の対辺比の値や、円に内接する三角形をどの研究のよ
うに、幾何学を系統的にまとめようとした最初の数学者である。

タレスより半世紀おくれタレスの後をつぎ研究をしたのはピュタゴラス
（Pythagoras –580〜 –500）である。ピュタゴラスはイオニアのサモス
島の生れでエジプトやパピリオスに学んだが、その後クリトに学校を
建て、算術・幾何学・天文・音楽の四教科を学ぶべきものとした。算術とは
今日で言う数論に近いものである。素数や合成数などに関する研究もある。
奇数列の和が自然数の2乗になることや、2角数の和（1 + 2 + 3 + ……）
などの研究もある。5種の正多面体の発見などおおきな業績を残した。

ギリシアのようすを変えたのはペルシア戦争である。ギリシアではこの外
敵を防ぐためにポリスの小国家を統合する必要が生じた。紀元前４８０年に
サラミスの海戦でペルシアの大艦隊を破ったが、アテナイはギリシア
の政治文化の中心となり、殖権地の学者が集まってきた。アテナイの市民は
奴隷を使用することにより生活に余裕を生じ、ソフィストと呼ばれる弁論や
数学、天文などを数える職業的教師が生れた。ソフィストたちはヒポクラテスがあまり考察しなかった円の問題なども研究課題としてこれを発展させたが、中でも興味の中心となったのは作図の三大問題である。これは次の3問である。

1. 任意の角の3等分の作図（角の3等分）
2. 与えられた立方体の2倍の体積を持つ立方体の一辺の作図（立方体倍積）
3. 与えられた円と等積を正方形の作図（円積問題）

ようするにこれらの作図問題は、作図に使う道具としてコンパスと定木だけを使って作図せよというところに難点があるわけであるが、ギリシャ人は円と直線がもっとも整った形だと考え、その考えからこの2種の図形を書く道具であるコンパスと定木だけでもすべての作図が可能であるから信じていたのである。

したがって、コンパスと定木とは何か具体化した道具かということをはっきりさせねばこの問題の解決とはならない。このことに関するもとが作図の公準である。

1. 2点を与えられればその2点を通る直線が作れる。
2. 与えられた線分をその2倍に長くても延長できる。
3. 任意の1点を中心に、任意の半径で円を描くことができる。

この3つの公準を有限回用いて目的の図を描くことが作図問題である。上の三大問題が解決されるには、2千数百の数学の発展の年月が必要であった。この解答はいずれも不可能という結論になったのである。すなわち上に掲げた3つの公準の作図では、ギリシャの三大問題はできないことが証明された。その証明は幾何の中で数値されたものではなく、解析幾何を用いた方程式論の中で解決されたのである。現代数学の中でもっとも重要な対応という考えを用いれば解決されたたとき、この作図の可否を決定する問題が困難さがあったのである。

ここではこの作図の可否に関する証明は省略させていただき、大まかにこの三大問題を研究した数学者の努力を列挙して参考に供したいと思う。

ソフィストの中でエリスのヒッパルクス（Hipparchus？460？～427？）は紀元前425年頃円積曲線と呼ばれるある種の曲線を利用して任意の角の2等分ができると見いだした。

第1図で、AOB、Bは正方形である。線分ABは等速度運動をしてOBにかさなり、線分OAはOを回転の中心とし等角速度運動をしてOBにかさなる。ABがOBにかさなるとき、OAも回転して同時にOBに重なるものとする。ABがCDまで平行運動をしたとき、OAは回転してOEにきたとする。OEとCDの交点Fの軌跡がヒッパルクスの円積曲線（Quadratrix）と呼ばれる。これを用いて角の2等分をするには（とえば∠AOEを∠等分するには）線分ACをCA等分した点Pとすると。

このように、ある種の曲線を使って角の3等分を行なう方法はその後にもいくつか開発されている。このヒッパルクスの円積曲線を使って立方体倍積の解決策とした数学者もいた。ディオニスラットス（Dinostratos）である。B.C.350年の頃、彼は第1図でOA＝1とすればON＝2 cosaとなることに気がついた。

立方体倍積は次のような伝説のためにデロスの問題とも言われる。エーゲ海のデロス島に伝染病がはかり、神に申し上げる歳数を2倍にすることになった。それで急ぎ各辺の長さを2倍にしたらその結果体積は2倍とならず8倍となっている。ために神の怒りを買ったというものである。デロスの人はこの問題をプラトン（Platon？427？～347？）に頼んだという。
キオスのヒッポクラテス（Hippocrates 非70年～400年）は円積問題を考えて、第2図のごとき図形を書いてみた。直角3角形の各辺を直径とする半円である。このとき、直角3角形の面積と直角をはさむ2辺のそれぞれの上にある三日月形の面積の和が等しいことに気がついた。これをヒッポクラテスの三日月形というが、曲線で囲まれた図形の面積が、直線図形の面積に等しい例を見つけて喜んだわけであるが、これ以上は進展しなかった。

立方体倍積に関しては

\[x^3 = 2a^3 \Rightarrow \frac{a}{x} = \frac{a}{y} = \frac{y}{2a} \]

上式のように、\(x^3 = 2a^3 \) とくのに \(y \) という補助変数を用いれば、比例の形で表わされることに気がついたが、これもこれ以上良い結果は見つからなかった。

円積問題で無限の考えに一歩近づいたのはアンティボン（Antiphon）である。B.C.450年ころ、円に内接する正2角形（あるいは正3×2角形）を考え、\(\pi \) を大きくして順次円の面積に近づけていこうとしたのである。これをアンティボンの取尽法（積尽法）と言い、無限論の最初の試みであろう。

円積問題は角の3等分や立方体倍積とは違った興味があるので、これは稿を改めて書いてみたいと思っている。ここでは角の3等分を主として説明することにする。円積問題についてつけ加えればアルキメデス（Archimedes 287年～212年）の研究をあげねばならない。アルキメデスは、円の面積が円周と半径を直角をはさむ2辺とする直角3角形の面積に等しいことを見だし、また次関係も見つけている。

\[
\frac{10}{7} < \pi < \frac{22}{7}
\]

第3図で\(\angle XOY \)の3等分を考えてみよう。Oを中心とし半径1の円を描く。OX、OYとの交点をそれぞれA、Bとし、\(\angle XOY \)の3等分 \(\angle ZOY \)のOZとの交点をCとする。AおよびCよりYに垂線をおく。それぞれの足をD、Eとすると。

\[
\begin{align*}
OD &= \cos 30^\circ = \frac{a}{\sqrt{3}}, \\
OE &= \cos 30^\circ = x \\
AE &= \cos 30^\circ = 0
\end{align*}
\]

なる方程式を解く問題となる。立方体倍積は \(x^3 - 2 = 0 \) を解けばよく、いずれも3次方程式である。

ある作図題が代数方程式で表わされているとき、この作図法が可能であるためにはこの根が、加減乗除および開平方という5種の演算の有限回の組み合わせで表わされればよい（逆も真）ということが証明できている。したがって立方体倍積および角の3等分は、\(x^3 - 2 = 0 \) あるいは \(4x^3 - 3x^2 - x = 0 \) が2次方程式3次に因数分解（もちろん余只是ね）でなければ作図可能ということになるが、このような因数分解の方法がないこともわかっている。もちろん \(a \) は任意定数であるから、ある特殊な値、たとえば \(a = 0 \)（\(\angle XOY = 90^\circ \)）とすればもちろん作図可能である。

角の3等分は作図の公準を無限回使用ことを許せばもちろんできる。角の
2等分はかんたんにできるから
\[
\theta = \frac{\theta}{2} - \frac{\theta}{2^2} + \frac{\theta}{2^3} - \frac{\theta}{2^4} + \cdots
\]
とすればよいわけである。

ギリシアの三大問題ばかりでなく、やさしそうでどうしてもできない作図題がいくつかあった。パボスの拡張問題がその好例である。第4図で

\[\angle XOY\]の中点に定点Aがある。Aを通る直線とOX、OYと

の交点をそれぞれP、Qとするとき、PQ = l (与えられた長さ) として、この問題がそれである。

点Aの位置に条件をつけて、

\[\angle XOY\]の2等分線上にある、

あるいは\[\angle XOY\]の外角の2

等分線上にあるとすれば解ける。

点Aを\[\angle XOY\]の2等分線上にある場合がパボスの問題である。

第5図で作図ができたものとすれば、

\[\triangle O\hat{P}Q\]の外接円は決定しているし、

Mの位置もわかるから（PM = QM）

これは次のような問題となる。

\[\triangle O\hat{P}Q, \angle P\hat{Q}O\]

の2等分線とPQとの交点A、O

が与えられたとき、\[\triangle O\hat{P}Q\]を作図せよというのと同じである。

\[MA \cdot MO = MQ^2\]

とすると、MA = x、OA = a、

MQ = b とすれば \[x (a + x) = b^2\]

なる2次方程式を解く問題となる。

コンパスと定規だけではどうも多分の3等分作図はできないみたいということになって、ヒッパルコスのように曲線を利用する学者、あるいは幾何の道具を利用する数学者もあらわれた。これについて説明する。

角の3等分に利用される有名なそれらのニコメデス（Nicomedes B.C.200年）

のコンコイドがある。定点Oと定直線ABがあり、Oを通る任意の直線XY

を書き、ABとの交点をPとする。

XOY上にPQ = l (定長) となるようにQを求める。Qの軌道がコン

コイドである。このコンコイドを利用して\[\angle XOY\]の3等分をするには、

OXに垂直に交わる直線ABを書き

OYとの交点をPとする。OP = PQ

なるようにOY上にQを求める。Oを

中心とし、PQ = l なるコンコイド

を書く。Pを中心としPOの半径で

円を描きコンコイドとの交点をRと

すれば

3 \[\angle ROX = \angle XOY\]

この理由は第6図で、

OABとの交点をP'、P'Oを

2倍に延長した点をR' とすれば

\[\triangle P'OR'\] は直角3等分形となり

\[P'R' \parallel \overline{OX}\]

あとは図より理由は明らかであろう。

コンコイドを利用する方法では、

ある角を3等分するために、そのた

びにその角に適合するコンコイドを

書かなければならないという欠点が

ある。ヒッパルコスの円積曲線のよう

に一つの曲線ですべての角の3等分
に使えるような曲線はないであろうか。これに対する解答としてパスカル（Blaise Pascal 1623～1662）の蜗牛線がある。中心0、半径aの円を描き、円周上の定点Aを通る直線AOXを書く。Aを通る任意の直線と円周との交点をBとする。AB上にPをBP＝aとするように求める。Pの軌跡がパスカルの蜗牛線である。この曲線の利用のしかたは第10図で、任意の角XAYを描く。Oを通るAYの平行線と蜗牛線との交点をPとする。AとPを結べば
3∠YAP＝∠XAYとなる。
理由は、円OとAPとの交点をQとする場合,
OA＝OQ＝QP，AY∥OPであるから，aとは図より明らかであろう。
コンコリドのコンコリドやパスカルの蜗牛線を書く道具もあるが、次に手に入ることの必要な道具を使ってできる角の3等分法を説明する。もちろん分度器があればそれを使って角の大きさを測ればもっともかんたんなこととはいうまでもない。以後3等分する角を∠XOYとする。
第11図で，∠XOYの3等分角を∠XOZとする。OX上に点Aを
求めるOA＝aとする。AよりOXに

第8図

第9図 パスカルの蜗牛線

第10図 蜗牛線による角の3等分

第11図 角の3等分線の性質

第12図 目盛のある定木による角の3等分

第13図 直角定木による角の3等分
第13図は一種の直角定木を使っての角の3等分である。3角形の周辺条件を利用した方法である。第13図のような直角定木では2度までであるので、いちどに角の3等分をすることができず定木がないものかということで作られた定木がある。半円と定木を組み合わせたものである。

前に説明した定木のある定木を利用する例として第15図の方法がある。∠XOYを3等分するのにCを中心として半径aの円を描く。OXとの交点をAとする。Aに定木をあて、円OとB、で、直線OYとCで交わらせ、BC=aなるように定木を置けば、∠ACOが∠XOYの3等分になる。

第15図の方法を第16図に描かれているようにコンパスを利用して行なうと便利である。これは今世紀の初めに発明されたヘルメスのコンパスである。PとQは針、Rは筆点の心はいる。前の第15図で、円Oを描くのにQRを用いる。P→A、Q→B、R→Cをな

のように置けば良いわけである。

第17図は5角定木の直角を用いる方法で、1931年にピーペルバフが発表した方法である。

∠XOYを3等分するのに、半径aの円O、Oを互に他と中心を通るように描く。第17図で3角定木の直角の2辺が、一方は円Oに接し、他方はAを通るようにし、しかも直角の頂点BがOY上にくるようにする。（AODは円Oの直徑）このとき、3∠ABO=∠XOYとなる。

第18図はヘンスの脚牛線を書くための道具である。OCを固定しABを動かせば、Aの先がヘンスの脚牛線を描く。この器具の3等分は図で明らかであろう。

またバタグラフを使っての角の3等分法もある。これも説明の必要はありえない。よさ溶けめた道具を用いて戴ければ、解の存在する作図をすべて解されることである。

（解が存在するという意味は、3辺の長さが5、10、20であるような3角形の作図はできない。これは解がない。角の3等分法は存在するが、作図の公準内では作図不可能である。）

作図に使う器具をどんどんふやしてゆけばこのようにいくらでも

-38-

-39-
かわたった作図が考えられる。それに対して作図の公準を制限したらどんな作図が可能であるかということも普より考えられてきた。最初に考えられたのはコンパスの開きを固定したらどうかということである。たとえば、アブワのアブル・ワファ（Abul Wafa 940〜998）とかルネッサンスに活躍したレオナルド・ダ・ヴィンチ（Leonard da Vinci 1452〜1519）などがそうである。

さらに時代がさかのぼってくると、コンパスだけでどれだけの作図が可能か、定木だけでどれだけの作図が可能かということが論ぜられるようになった。本稿では結果だけを述べてこのことに関しては円積問題と同様に次の機会に述べることとする。

シュタイネル（Jacob Steiner 1796〜1863）は1833年に次のように興味ある研究を発表した。

一つの完全に描かれた円周とその円の中心が与えられているれば、定木とコンパスで作図できる初等幾何の問題は、定木だけですべて作図できる。もちろん、定木だけでは円が描けないが、描こうと思う円の中心と、円周上の一点が得られれば円が作図できたものとするのである。

またシュタイネルよりもはやく、マスカロニ（Lorenzo Mascheroni）は1799年に次の定理を発表した。

定木とコンパスによって解かれる作図問題はすべてコンパスのみで作図できる。もちろん、コンパスだけでは直線は引けないし、線分を延長することはできないが、引こうと思う直線の上の2点が求まれば、その直線を書けるものとするのである。

以上は角の3等分を主体において、ギリシアの作図の三大問題の取扱いやどのように変化したかということをかいつまんで書いてみた。これについては方程式論、あるいは無限級数展開、無限論等の歴史もあわせて述べなければ意をつうせないが、ここでは表面をたてただけにすることにした。

編集後記

いよいよ灯火親しみの候になり、諸先生方には御研究のピッチを上げていること、推察いたします。

大変御迷惑をおかけいたしました『数学史研究』の発行もようやくもとのベーヌにもどりました。

雑誌の内容についてはいろいろ御注文もあるかと思いますが、いつも原稿をあつめるのに四苦八苦している状態では、到底内容の検討まではできそうもありません。

格調の高い学術雑誌にしたいという御意思も前からあるようですが、一方においては、新らしい会員を獲得して、会を発展させるためには、数学史への認識を新たにし、関心を高めるような啓蒙的要素も加味していくべきだという考えも成り立ちます。

いろいろな要素が混在する状態ができあがりますが、このような趣意をお汲みとりいただきまして、御協力いただきたいと思います。

会員の皆様の積極的な研究発表をお願いすると同時に、雑誌についての建設的な御意見をおよせ下さいますよう重ねてお願い申し上げます。

(1966.9.1 片野)

数学史研究

第4巻第2号（通巻30号）
1966年7月〜9月
発行所 日本数学史学会
東京都新宿区戸塚町3丁目212番地
富士短期大学内 TEL 368-2254
会　費　年　額 1,200円
振　替　東　京 20022番
1966年10月1日発行
新刊案内

15世紀朝鮮刊 銅活字版数学書
日本数学史学会員 児玉明人編著

本書はこれまで未発見であった朝鮮李朝期の数学について、雑誌に連載され小文を一冊にまとめ、日本に伝来している。中国、朝鮮では伝わっている。五百年前の朝鮮において宋元明の数学書を模写刊行した。極めて貴重な銅活字版の楊時算法、算学開蒙、詳明算法の全巻を解読して紹介した特集版。

会田算左衛門安明

理学博士 平山諫編
東北大学講師 松岡元久

A5版 350ページ 定価1,500円

明年を以て明治百年を迎えますが、この文化の原動力の一つは幕末に巻き起こした和算のブームであったことは否定できません。その最たるものである、会田安明の上流流ではありません。とくに東北地方では、会田の役を務める、100年たっても、弟子孫及び孫に多くの人々に教育流算学が伝えられました。農民、町人までがこれをしたって、職務のかたわら数学を研究したものです。

今年は幸も、この会田安明の150回忌にあたります。彼の生地山形市においては、この偉人の追悼として、本年9月20日から26日まで、記念式典、記念講演会、記念展示会などが開かれました。

この記念の日を囲んで、会田の業績をのぞみ上流流を広く世に知らしめるべき発行会田算左衛門安明出版されました。

山形の算額
理学博士 平山諫
山形状助教授 松岡元久

A5版 300ページ 定価 300円

会田安明の150年祭にあたり、会田ゆかりの地山形市に現存する算額、かつて掲げられ存在しなくなった算額25点ばかりを校訂編纂して収録しました。
原典に忠実に写したものを、また現存のものは実物と照合した正確なものと時期をまとめました。

【郷土数学叢書】第Ⅲ輯

郷土数学の文献集 (2)

富士短期大学教授 萩野公剛編著

A5判、厚140頁 定価 2,500円

文献集の第2巻は関東地方編と称し、郷土数学に関係した貴重な論文31点が収録されている。これらの文献の多くは特にこの研究に必要と思われる論文で得難いものばかりである。しかも、これらに529個所の補註を加えた帯著である。

【郷土数学叢書】第Ⅳ輯

改訂 增補 算額研究史 (上)

A5判、厚140頁 定価 2,500円

数学の問題を氷点にして神髄に約束する風習、いわゆる算額奉廃はわが国に独特なものである。この算額について研究した貴重な129点の文献を年代順に論述し、かつ神算算法の初版を復刻した帯著である。

発行所 富士短期大学出版部
東京都新宿区戸田町3の212 電話(368)2254
振替 東京 157,559
御注文は最寄書店または発行所に御申附願ます

数学史研究 4巻2号(通巻30号) 昭和41年10月30日発行
東京都新宿区戸田町3の212 富士短期大学内 電話(368)2254 日本数学史学会 (振替 東京 20022)