数学史研究

第7巻 第3号
(通巻43号)

1969年10月～12月

目次

論 説
数学史論の歴史的考察…………………………………吉田勝彦……1

百川治兵衛と百川忠兵衛………………………………鈴木久男……18

教 育
我国における不等式指導の歴史 (4)………………………..鈴木久次……33

寄 書
思い出たこと (2)…………………………………………大矢真一……63

会 報
二本松市の生んだ和算家の顧影講演会；山東派和算事跡を偲ぶ会；佐久間庸軒の顧影被露と70年忌法要の会；新入会員紹介…………………………66

編集後記…………………………………………………………71

日本数学史学会
論題

数学史論の歴史的考察

吉田 勝 彦

全ての科学は歴史の科学であると言われる。
その意味は、科学が「自然の歴史・及び・人間の歴史」の認識であるからである。このため、その歴史の認識と言っているのは、自然及び人間が、本質的に変化・発展するもの、すなわち、歴史そのものであることを意味している。

従って、数学史は「歴史の科学・の歴史を問題とする。ここで、数学が本質的に変化・発展するものであることが意味されているのである。そして、数学そのものは自然の認識であり、数学の歴史が人間の歴史に属するものであるならば、数学の歴史は自然と人間の歴史の二重性をもつものとして、われわれの前にあらわれる。そこには、数学史の困難があると思われる。

数学史学の研究に当って、われわれは先人のたせた研究を土台とし、しかも、日本における研究においては、小倉金之助・三田博雄・近藤洋治等の研究をふまえることは、今日、研究者の常識に属することである。それらの人々は、数学史方法論を真剣に考えた人々である。

日本における本格的な数学史学の築け、時代的には、昭和初期以降につながされたものである。その歴史的背景についての考察は他にまとめて書いたことがあるので、ここでは省略する。①数学科の考察に当って、まず第一に問題としたならばのは、モロドシーの論文であろう。それは、マックス・エングルスの見解をふまえて書かれたものであるが、数学史学において一つのエポックを画するものであったと言って良いだろう。そこにおける数学史論と関連する論文は、モロドシーの他に、コリマン・ゴルンシュタインのもののが見られる。

モロドシーの論文は、日本の研究者に大きな影響を与えたものであったが、特に三田・近藤の数学史論の見解はモロドシーの見解を受けつけ更にそれを発展させたものである。④また、近藤の見解は戸塚潤の科学の発展について
の哲学的考察をふまえたもののように私には見える。④ 一言にして言えば、日本における数学史は、ポポフ流あるいは新カント派流の数学史論を乗り越えたものである。

しかし、私には一つの疑問が残っている。それは、これまでの数学史論は、ポポフ流・新カント派流の数学史論を完全に乗り越えたものでのうか、ヘーゲ流の論理を足で立たせたものでのうか。

見に角、数学史論の反省は、われわれの数学史研究に何か与えてくれるのではないだろうか、と私は考える。

数学史論の考察は、一つの学問論の考察ともなるであろう。

1. 科学としての数学史

数学史学の科学としての成立をはかれた小倉金之助の数学史論は、小倉自身の次の観点に基づげられていることがわかる。

ある抽象性と不変性によって特徴付けられている数学も、すべての科学のように、その根底に於ては、生産力、技術及び経済の発展段階によって決定されている。これ等は、直接に、数学に新問題を提供し、間接に、それによって制約される他の上層建築—自然科学及び社会科学、社会的意識形態を通じて、数学に影響を及ぼして来る。これ等の関連は、ある程度に於て可逆的であり、それ等の間の相互関係は複雑を極めている。

⑥

これは、マルクス・エンゲルスの『革命史批判』及び『社会哲学批判』の中での唯物史観の定式を、数学史論においてそれをモーテライフして定式化したものを見せるものであろう。それは単に唯物史観を機械的に述べたということではなく、小倉の数学史研究の中で、数学史の方法についての考察が必要とされ、数学史研究をすすめるうえで指針を与えてくれたのが唯物史観であろうということができるだろう。

科学としての数学史というのれば、事実の羅列としての数学史に対する批判として、その否定の中に得られる意味である。事実羅列の数学史と科学としての数学史の違いは、まず数学史学に対する問題意識が異なるのである。科学としての数学史は、数学の歴史の事実の中から、その背後にある何かを見つけるものである。事実羅列の数学史は、文献学の一環とも見られる。そのためは、文献学あるいは文献考証学という学間分野に属することになり、数学史学とは見られない。しかし、文献学的又は文献考証学的数学史は数学史学における現象論としてその存在理由をもつ。

科学としての数学史は、数学の歴史についての考察の中から、一つの主張をなすものである。それは数学史学における理論を形成する。学問には方法がつきものである。文献学主義を乗りこえたところの科学としての数学史学は、あたかも自然科学における実験の役割と意義のように、自らの方法を反省することをしむれは自らの理論の実証を行うことができない。すなわち、科学としての数学史学は、その方法の反省を通じて、理論の実証を意識するようになる。

科学としての数学史学成立の歴史的過程は基本的には以下のようなものであった。

さて、科学としての数学史学の第一義的意義は、数学史学が科学であることを主張するものである。問題は数学史学の本質の規定に移行することになる。

科学とは何であろうか。科学の本質は、自然及び社会の認識である。であるから、自然及び社会の本質とは、科学の理論によって明らかにしなければならないことである。す、次に科学とは何かというと、意識から独立した世界的の法則性的人間の脳への反映である。更につけ加えるならば、法則性は対象の本質が現象する全構造を意味している。

ここで数学史学の対象が問題とされるが、それは、数学の歴史である。数学の歴史は対象化して捉えることができ、あたかも自然存在物と同じような意味で把握されるべきである。従って、歴史とは何かという問いに対しては、事物の運動・変化・発展とでも説明する他はない。歴史学とは何か、ということ、歴史とは何か、ということを混合してはならないのである。ただ、数学の歴史は、われわれの前に、数学史とか数学史とか数学的思考をいかいうどうを様々な形態で示される。そして、本質に変化・発展するものとして、また人間によって形成されるものとして、まさに数学の歴史はわれわれがその本質を明らかにすべきものである。
三田と近藤の数学史論の根拠には共通の数学観があるのでもあるが、それは数学の本質の規定とも考えられる。小倉の数学観も三田・近藤と共通のものと思われる。その数学観は、ラッセル・ボアソンが提唱した日本での田辺元などのカントの流れを名乗先駆的純粋理性的数学観と対立するものであった。昭和初期において、数学観はそのような対立をもっていたのである。
さて、三田・近藤の数学観はエンゲルスの規定を基礎とするものであり、数学者は自然の量的側面の模作である。
という規定である。ことで、数の概念については、ヘーゲルの規定をとるものである。
数学の本質の規定の問題については、たとえ自然の量的側面の模作として規定するにしても、なぜ、そしてどのような意味でそのように規定されるのかについて、詳細を体系的な検討・分析を必要とするであろう。この問題については、私は他にまとめて発表したいと考える。数学史論の展開に当たって、実は数学の本質の規定は決定的に重要な意味をもつものであるが、しかし私は、ここでは三田・近藤の見解をとり、それを前提として話をすすめることにする。
さて、問題はこうである。数学の歴史性と論理性の統一は何を根拠とするものなのか。モロソドディも言うように、根本的には、それは上・思惟と存在についての問題である。
そこで、歴史性と言うときは二つの意味がある。第一に、数学の理論の歴史性であり、第二に、数学の発展の歴史性である。同じく、論理性と言うときも二つの意味がある。第一に、数学の理論の論理性であり、第二に、数学の発展の論理性である。更につけ加えるならば数学は、その実体として、数学の理論である。数学の理論、数学的内容・理論の形式・理論の論理を統一しもつものであろう。
三田は数学の素材・発展の形式・発展の多了が歴史的現象的に制約されるとした。ことで、歴史的現象としてはより具体的には、三田は経済的・社会的・政治的・社会的・イデオロジー的とし、近藤は同じ内容であるが社会の物質的生産及び技術・哲学的施設とした。これらは、数学の発展の外的要因として規定される。モロソドディ・三田の見解に対し、近藤の見解の一歩前進は、素材
- 発展の形式・発展のテンポにつけ加えて、数学の論理・方法の性格まで歴史的社会的制約となり理論の内容にまで歴史的社会的制約をも加味している、ことでありある。それは、主として直接的には、哲学的地盤の影響によるものであるというのが近藤の考えである。これについては、戸坂篤の考えと一致するが小倉・イデオロギーの発生・内容とも一致するものである。

- これらの外的要因に対して内在的要因が規定されてなければならぬ。モードシーは数学の内在的・必然的・論理的発展形式にも注目したが、三田はモードシーの点について充分な展開を行っていないという、また小倉の研究も社会的歴史的側面を問題としているが、この点については全く検討をしていないと、内在的必然的発展形式・論理・弁証法の問題をこれからの課題であると。

- ところで更に問題されることは、歴史性と論理性の統一及び外的要因と内在的要因の統一の問題である。私はここで、歴史性と論理性のそれぞれ二つの意味について注意しておいた。三田は数学の理論そのものの歴史性について次のように説明を与えている。

- 「数学」において、仮説方程式の理論を展開するためには、有理数の理論を基礎に置かなければならない。有理数の理論を仮定するためには、整数の演算法則を前提にせねばならない。異扱い、仮説方程式の理論は論理的に有理数の理論を前提し、有理数の理論は整数の演算法則を仮定しているのである。ところが、有理数の理論は仮説方程式の理論に歴史的に先行するものであり、整数の演算法則は有理数の理論に歴史的に先行するものである。即ち、「数学」の理論はそのもののうちに歴史的なものを含んでいるのである。⑩

- ところで、三田が述べているように意味での、理論はそのもののうちに歴史的なものを含んでいるということは歴史的事実として指摘することができるであろう。しかし、その歴史的なものは、理論にとって全く必然的論理的なものと言えるであろうか。それは理論そのものにとっては特殊的なものであり、理論の一層の発展において、偶然的なものとして理論の中から姿を消さずと言えるのではないか。ペーゲルの概念論で言えば、個別的・特殊的・普通的概念は、普通的概念の段階において正著されるものである。すなわち、個別・特殊・普通という概念の発展から考えるならば、三田の言う歴史的なものは、個別的・特殊的な理論の段階においてあっても必然的論理的のものとして考えられる。もちろん、普通的な理論体系においては必ずしも理論の構成に不可欠のものではない、歴史的なものは個別的・特殊的をもと見されることである。

- 現在の公理論の観点からは、三田の言う歴史的なものは論理的なものとは言えないのである。公理論とモデルの関係において、モデルは特殊的実体としに意味をもつのである。例えば、実数論の展開において仮数論、有理数論を前提として理論を展開することがある。しかし実数論の理論体系そのものにとっては仮数論有理数論は特殊的なものであり、仮数論有理数論を前提としないで実数論を展開することができるのである。

- つまり、認識実践は歴史的に形成されるものであるが、そして理論は、歴史的な積み重ねとして発展するのであるが、論理性には個別・特殊・普通という順序で発展するのである。さらに、この一点の認識が重要なのであって、三田の言うような意味で理論そのものの歴史的なものを指摘するだけでは大した意味がたいのである。

- 従って、「数学的理論の論理的・体系的観点からの発展・すなわち数学の発展の論理性について。

- 数学的理論は自己を自己自らによって基礎づけながら、「自己固有の法則」に従って発展するものとして、数学的理論の論理的発展が弁証法的に理解される。⑪

- と述べ、その説明を与えているが、私には数学的歴史的展開の論理的意味について説明を与える得る見解とは思われない。自己固有の法則・とは・思惟の法則・を意味するのであろうか。三田の場合、いわゆる純粋な思惟の法則として捉えているわけではない。これについては、三田独特の見解があらるように思われる。すなわち、

- 人間のあるゆる感性的実践的活動を通じてのこの世界との交渉過程は、やはり一つの物質過程の歴史的発展であり、それはそれ自身必然的なるものとして論理的なべきものをなすのである。⑫

- と三田は述べているのである。人間と世界との交渉過程が物質的過程であるから、物質的過程として自然的・論理的であり、数学的理論はかかわる物質
的現実的過程の量的側面を抽象的に反映する。ものであるから，数学の理論及び数学の範囲は論理的であると言える。三田の言う交渉過程とは技術のことに他ならない。われわれは先に，数学は自然の量的側面の認識であるとして出発したのであった。三田の見解は，自然の量的側面が人間の頭で反映される過程について説明を与えているのである。しかし，ここで注意しなければならないのは，自然そのものの認識と三田の言う物質的現実的過程の反映とは区別されなければならないということ。三田の見解は認識の過程の側面を，歴史性と論理性の統一の根拠の根本的な説明に追ったものであるが，最後に一つの問題点があったのである。論理的発展は歴史的発展を現実的物質的過程を模倣したものであるから，その中に歴史的なモメントを含んでいるのである。と述べているのも同じ混同によるものである。

問題を明確にするならば，論理）とは自然そのものの論理であり，自然自体の構造のことをである。数学者の理論は，その理論の対象とする自然自体の構造が反映されたものである。数学の発展の論理性は，この自然自体の構造・自然の論理に基づきかつ制約されるものである。そして，自然自体の構造と数学の発展の論理性の統一性を含んでいるのが，さらに三田の言う現実的物質的過程・技術的交渉過程に他ならない。三田の見解は，数学の論理及び数学の発展の論理性が，自然自体の構造によって制約されることを明確に見いだすのである。

この問題に関連する近藤洋治の見解も三田の見解と同じ水準のように思われる。数学者の理論そのもの歴史性に関して，それも極めて重大なことは，「のところへ来る前提が何であるかである。これは恐らく数学の発展の蓄積された成果と現実の与える課題との組みあいのもとに決定されるであろう。そしてそこで歴史性と論理性との統一の問題点は，どのようなものであるだろうか。

と近藤は述べているが，ここで言う論理性は「term」という仮言的形式における演繹・証明を意味するかのようである。また，数学自体の論理性・相対的独立性について述べ，その根拠を数学が自然そのものの量的認識であることにおいてが，それでは一向に論理性の意味が明らかにされないのであり，論理の性格・論理の内容の性格・までも社会的・歴史的に制約され，特に哲学的地盤の影響を受けるとしても，論理そのものの概念が不明確にされ，結局，論理性とは，思惟又は思惟の法則と，もっていう他はないのではないか。ところが，近藤の数学者方法論は，カント流の先大体系導説に対する批判であったべくから，論理性・相対的独立性を保証するものは，カント的あるいはユーリの精神，論継の自由とは全く異なるはずだ。それは論理性は自然そのものと関連しているのである。論理性・相対的独立性を保証するものを，自然自体に求め以上，この点についての説明を避けることはできないのである。

私の考えは，先にも述べたように，論理を自然の論理として捉えるのである。戸坂篤も述べているように，自然自体のなりたちとして捉えるのである。科学は自然の認識であるが，この認識の中に，自然自体の構造が反映されているのである。それでは，論理の理論は，自然の認識の程度・段階によって，すなわち自然自体の構造を理論がどの程度に反映しているかによって制約されるのである。そして，理論は，いつんは自然自体の全構造を歴史的認識実践によって明らかにしてゆくのであるが，その認識の歴史的順序が，自然自体の構造によって制約されているのである。実質的上における認識の具体的・実在的順序は，三田・近藤が論説しているように，他の様々な要因によっても制約されているのである。その点については，三田・近藤の解釈は予想された分析を包んでいるのである。しかし，歴史性と論理性の統一と言うとき，その根拠は，自然自体の構造をぬきにしては，あいまいものとなるのである。

私は先に，ヘーゲルの概念規定，個別・特別・普通についてふれていた。ヘーゲルはこれを思惟の法則と，として規定したのである。これは，ある意味において，概念の発展の論理的順序を与えるものである。ところが，論理とは自然自体の構造のことをあった。すなわち，われわれはヘーゲルの規定を足で立てなければならぬのである。ここで，われわれは人間と自然との交渉過程・技術的過程から出発しなければならないのである。そして，技術的過程を媒介として，この技術を結節点として，自然自体の構造が，現象・実体・本質という立体的構造をもつことが明らかとなるのである。人間の技術的実践のある意味での自己性は，自然が，本質が現象する立体的構造を
なしていることに根拠をもつのである。そして、技術的実践・技術の現実での成立が先行して、自然の認識が保証され、技術的過程を媒介とする。自然の諸々の現象形態を出発点として、自然の認識が行われるのであり、そこから、認識が、現象論・実体論・本質論という論理的順序を巡ることが結論されるのである。

私の結論は武谷理論に到達することになる。（15）

弁証法論の「思惟の法則」にも言える。ところで、この思惟の法則が自然の論理の反映であり、人間の自然に対する働きかけ・技術的過程が、思惟と存在との結節点であるというのが私の結論であった。

われわれが数学の本質を、自然の量的側面の認識であると規定する以上、われわれは武谷理論に到達するのである。そこで徹底して考えなければ、歴史的論理的統一の模範を明確にすることはできないのである。

数学史学において、自然の論理の反映としての数学の論理を、立体的構造をもつ論理として、数学理論の論理を歴史的に検討することが一つの問題であるのではないだろうか。コロコロの意味も、立体的論理との関連において、公理論の一側面だけについても明らかにされるように私には思われる。

3. 数学の発展の合法則性

モロドン・三田・近藤の数学史論文論理は、ポブレ流の数学の発展の二段階説に対する批判をもたった。ポブレ流の二段階説とは、日本における田辺元などの著者としての数学と科学としての数学との分離を無し、学としての数学が社会的歴史的制約をめぐり、絶対的自由にのみ発展するというのである。このような単純な二段階説は現在ほとんど問題とされない。

これに対し、数学者によって与えられている数学の発展の段階説は5段階又は6段階に規定するものである。例えば、コルモゴロフ・高木貞治・筒井の見解に付することができるであろう。コルモゴロフの見解の社会的制約に注目したものであるが、これらの数学者の基本的見解は、数学の理論の発展からみた段階説である。それぞれ非常に鋭い見方をしてはいるが、それは直線的段階説である。

武谷理論における三段階説はこれとは意味があるものであり、発展が直線的でなく、環をなしてすむものとして捉えるのである。歴史は一回限りもののである。その限り、科学の発展は直線的な段階説に捉えられる。しかし、螺旋形が環をなしてすむと考える段階説は、そのうちに直線的なものを含みつつ、元の地点に向かう螺旋形をとりながら発展するものと捉えるのである。その螺旋は、自然自体の立体的構造と自然の階層性にある。

数学の歴史を見る場合、このような螺旋形の発展を捉えることは出来ないものであろうか。われわれが数学を自然の量的側面の認識として考える以上、数学史の研究においてその試みを一度やってみる必要があるのではないか。そして、そのような試みの中から、自然科学と数学の本質的往復があることが明らかになる可能性もあるのではないかだろうか。

さて、私の考えは、数学の発展は自然自体の構造によっても制約される。というものであった。で、ここで混同を避けるために一つ注意しておくことは、自然自体の構造によって制約されると言うことができる。数学の発展の合法則性と自然法則と全く同じ法則性であると言うのではなくない。これは、数学の発展が社会的、文化的、理智的、社会的、哲学者的制約であると言うことがことである。数学の発展の合法則性と自然法則と全く同じ法則性であると言うこともない。

数学史が数学の歴史の認識である以上、数学の歴史における法則性を見い出そうとするのは、単に趣味的に数学史の研究をやるのではない。もちろんそのことである。そして、数学の歴史の法則性は、数学の歴史に固有の法則性であって、経済法則と異なり自然法則とも異なるのは明らかである。更に、数学の発展を制約する様々な要素が数学の発展の法則性と密接な関係にあることもまた明らかであろう。

数学の発展は全く偶然的なものであろうか。単に偶然的なものの積み重ねてないから、そのような自然性があるであろう。理論の発展の論理的必然性を通じて社会的経済的なものとの関連における必然性が次第に考えられるのである。数学の発展が全くダラダラでないと考え、そこに何らかの
法則性があるのではないかと考えられるのである。

それで、いままで小倉・三田・近藤そしてモロドシーなどによって研究されてきた数学史・数学史論によって、数学の発展の基本的要素が明らかにされてきたのであり、それらの個別的要素に注目して数学の歴史を見ることもむしろ詳細な研究が必要であるが、それらの基本的要素が相互にどのように影響しあって数学の発展が進んできたかを、総合的に見ることが、これから数学者史研究における大きな課題と言えるだろう。

その方法として、比較数学史の方法が一つの有効な方法になり得るように私は考えられる。

数学の歴史における法則性は、その法则性が見い出された時、それを現在数学の発展に役立てて、数学教育に役立てる考えられるが、それは、人間の実験的問題に移行する。数学史論の理論を数学の発展に役立たれるのは数学者であり、数学教育に役立てるのは数学者教育者であるが、数学教育史の研究者が多い長年立っているとは直接には言えない。しかし、数学史論の研究者が数学の歴史を理解するという行為は、研究者の実験とのかかわりの中から生まれるのであり、そこから研究者が現実とのかかわりの実践に自分自身の数学史研究の理論をもって立ちかえることになる。従って、数学史論の現実とのかかわりは、数学に関係することから各地に無関係を意味内容のものとして機能するものであり、かえてその方の意味が大きいとも言える。小倉金之助の研究などは、学問の文化的な意味として機能した面が大きいであろう。

要するに、数学の発展が現実に考えられる以上、その発展の根底にある、基本的矛盾は何を見い出し、その歴史的形態を捉えることが、数学の発展の法則性の意味であろう。そして、その原数学の歴史の分析的方法論的指針となるのが、歴史性と論理性の統一であり、発展要素の分析である。

モロドシーが、数学の発展は法則的である。科学的な数学史の課題は、これ等の法則性を劇的に、数学の発展過程をその必然性に於て示すことにある。（17）と述べ、小倉が「数学史研究第一輯」の序言でこのモロドシーの見解をとり、三田及び近藤がモロドシーの見解に更に検討を加えているものを、以下において考察してきたような意味において、数学の発展の法則性を考えるからに他ならない。
おける研究者の目的・数学史学の目的としてではなく、外部から強制された目的・国家目的などが介入するとき、研究者の主体的探索が阻害され、学問の自由が奪われるのである。

ところが、現実の社会における目的・価値は、階級的な目的・価値としてあらわれるのである。そこで、学問の自由は、この目的・価値から独立した目的・価値より高いものとして規定されなければならないのである。

私が数学史学を研究する目的は、数学の歴史の認識がわれわれに何かを与えてくれるのではないかと考えることにある。われわれが数学とわかり数
数学教育とわかり、諸々の現実世界とわかり書いてりくううえに、数学の歴史の認識が何かを与えてくれるのではないかと考えるのである。そして、われわれの数学史学の有効性は、諸々の現実世界とのかわりの中で、数学史学の理論の成功と失敗が明らかにされるとおりである。有効性が失われるのである。従って、われわれが学問の目的をもとり、われわれの学問に誠実であればある程、はじめから失敗することの明らかに国家目的などに従うということはできないのである。

そして、現実世界史的視野で見れば、歴史上かかってほどの学問のあり方が問題としているように思われる。それは、現在の社会に於ける学間の機能の問題としてだけでなく、自然と社会についての認識の根本的変革の問題に直面しているように考えられる。ただしその学問分野の非常に大きな問題の解決に、数学史学がかかわるということは、現代における数学史学の大きな目的・課題・意義であると言えるのではないだろうか。

なぜなら、数学史学が一つの学問としてあらゆる文化の一環をなすものとし
て、それは社会的存在であり、社会的存在としての学問は、理論の形成主体としての研究者の主観的な目的・価値とはすでに質的に異なる。社会的存在としての学問の社会的目的・価値をもつものである。

そして更に考えなければならないのは、数学の歴史の認識そのものが目的
化され、研究体制などの定着化と社会的分業化の進行につれて、科学のための科学としての性格を具えようになると、そこに科学の物質神聖化と非理が盛
大化される。その哲学的な意味は、学問それ自体・ということができ、それ
を、われわれの学問・としない限り、われわれという概念が社会的なものであることをから、われわれの反対物の学問として実現に利用され機能することになるだろう。

5. 数学史学の課題

われわれは数学史学の本質・目的などをついて見た。この本質・目的と関連して、現在における数学史学の課題が問われる。この点について
は、小倉金之助の日本数学史学会へのメッセージがまきたした歴史的考察
を支えている。又、最近村田金氏が、数学史研究に関する私見を発表され、その中で興味深い課題について述べている。

そこで、私が改めて課題について述べるまでもないが、私が興味をもつ
ている二・三の点についてふれておきたいと考える。

私は最近、問題の構造」と「価念」ということに興味をもっているのである。

数学における「問題の構造」とはどのようなものか。問を発するとは主体的なものであるが、問題は客観的な問題としてあるのであるから、その問が客観的そのものかどうか落ち着いているのか、そこに「問題の構造」と言えるものがあるように思われる。いままで、哲学的・問題論がいくつか考えられているが、あくまでも参考になるように思われる。

「価念」というのも主体的なものであり、デカルトが「価念論」で言うように、価念は受動としての意味をもつのであるが、それは主体の能動性の原動力ともなるのである。

「問題の構造」と「価念」は、根本的には主体と客体の統一の問題であるが、それをとして技術論を考えることになると思われる。

数学の理論や数学史の「問題の構造」を数学の歴史の現象の中に見出し出すことは出来ないだろうか。

最後に、村田金氏は上記した論文の中で、和算方策の研究について一つの危険を示されているが、それは私には相談のように思われる。数学史学の目的のところでその問題と関連することによりふれておきたいが、学問の中に学問以外のものが介入するのを防ぐことは、論理的分析が必要なものであるかもしれない。

いままで考察してきたような小倉金之助などの見解は、「科学的啓蒙主義」
と勝手に解釈するようなオブスキュランティズムがまかり通っているとの想
である。その問題について、われわれが最も注意しなければならないのは、
戦前において戸塚間が科学的価値を強調したことが、文献学主義・実証主義
・フィロソフィー精神の批判とともにあったことを考えるならば、われわれの
学問の内部において注意しなければならないのは、文献学主義・実証主義で
はないか。

すなわち、われわれの先史史学の本質・目的・課題などが、その方法論的
検討の中から明らかになり、歴史的と理論的の統一についての分析を与え、
いまままでの教育史研究の成果を正しく評価し、現実世界とのかかわりの中で
教育史学の有効性を見、学問の自由を最高の理論として守らなければならない
のであるが、学問の目的をなくこれまでの学問の成果を勝手に解釈して歪
曲し、そして逆にこれまでの方法論的検討を無視することによってあたかも
客観的分析がなされるかのように観察するオブスキュランティズムは、最
後にはフィッシャズムに追随するものと見ざるをえならない。

【注及び参考文献】
(1) 指導「昭和初期の科学史ノート (その一)」 (1969年4月) 参照。
(2) ゴールドストーン・数学者の起源及び発展要因に関するエンジルスの所説。
(哲学研究会「技術論と唯物弁証法」白書社刊・昭和10年9月)
(3) E・コリン・数学者の育成に関する新学習会の一般的的な論
(唯物論研究会「技術論と唯物弁証法」白書社刊・昭和9年5月)
(4) 三田博雄・古代東洋社会の数学・の序説・『数学者の方法論』三一書房
昭和23年2月)
(5) 近藤洋子・数学者の歴史の社会的制約・参照・(『戸塚間全集第三巻』所収)
(6) 小倉剛男・数学史研究第一輯・イデオロギーの発生・のはしがき
(7) エンジルス『自然の弁証法』(田辺板丸太郎訳・岩波文庫版)下巻P.141
(8) ペーバル『大論理学』(武市錦人訳・岩波書店ペーバル全集)上巻の二
参照。
(9) 近藤洋子「数学者思想序説」P.28-29
(10) 三田博雄「数学者の方法論」P.1
(11) P.9
(12) P.8
(13) P.10
(14) 近藤洋子「數學史方法論等之問題」1947年2月号 P.5
(15) 武谷三男「数学者の辯論」特に・ニュートン力学の形成について参照。
(16) 「ソビエト百科辞典」のコルソホロフによる・数学・ヴェ・エム・プ
ラジス・数学者教授法概論」1・1科学としての数学・ネービコフ「数学
史」第1章数学史の対象・参照・(伊東俊太郎・細見数学者の起源・『思想』
1967年3月号参照・高木貞治『過渡期の数学』及大塚数学会編『数
学の本質』(甲府書林刊)中・過渡期の数学・参照・(同深・数学者の歴史を語る・『数学セミナー』1968年9月号参照。
(17) 前掲モロツキー・数学の起源及び発展要因に関するエンジルスの所説。
(18) 「数学史研究」第5巻第1号。
(19) 「数学史研究」第6巻第3号、及び『思想』1969年4月号。
百川治兵衛と百川忠兵衛

鈴木 久男

百川治兵衛の著書、『百川治兵衛』という論文、『日本琴算』第一号に掲載したが、そこでは百川のこと、百川流のこと、佐渡のことについては一切深くいったさけない。それは、今回の論文だけでも相当の分量になることが予想されていたからであり、さらには、前者は百川流のことと思われていると述べることに主眼を置いていたからである。私は、伝説にある百川一算なる名前の算者は、百川流を学校近くで学んだ一算、あるいは、あるいは百川流を学んだある算者の意味に解したか正しいかと思われており、亀井流流は実在の人物ではあるが、亀井流の創始者と考えられる。著書をしたもの、亀井流をもとにして力のあった人と見るべきで、現在の除法を普及し、『早算手引集』、『十冊取算例解古』、『加算位算早割即席伝』なども著した山本一二三一，大正末期から昭和にかけて除法を普及に力を振るった星野らの業績にも比すべきものと考えている。

1. 百川治兵衛の著書、『百川治兵衛』

百川治兵衛の著書、『百川治兵衛』は、他国から移り住んだ者かはしばらく別くことに、百川治兵衛の自伝になるもので、今に伝わるものを年代順に挙げるとつきのととくである。

a. 諸伝分物 第二巻 元和八年（1622年）

弟子に与えた書本であったが、元和八年（1622年）に作られた。弟子には保存されされている。このときの題材、体験を知る為で、 masseを書かれた名前である。書物に三行で

元和八年

武月三日 百川治兵衛 花押

弟子に中

と書かれてある。
此佐渡国相川＝而中野兵九郎殿我等弟子＝候聞此一札改互算道不残可有相
伝者也

寛永十年十月五日 百川治兵衛 花押
弟子 児中

とあることが明らかにされた。阿崎平六のものと同じ書き振りであり、信
用してよいだろう。

1. 弟子に与えた書状(9) 寛永十二年（1635年）
金子勘の＜亀井算研究ノート＞(1)＞によると(7)
現在の両樫市にも寛永12年のものがあったであろうことを示す文章があ
ることを、在島の史家、横正隆氏から教られた。
・当国今百川算なりやと問、然りと答、百川へ何れの人なりやと問、知
らず、我陳中見野牛之助が方に百川治兵衛という人の算道許可の状あり、寛
永十二年とくめれば、古き伝来なり、とかたら。

これは越後今町名主者之助の日記「己酉随筆」114巻の「佐渡の志顧」
嘉永二年に記されているものであるという。

以上4点の資料が知れるのである。

2. 百川治兵衛の経歴 — 佐渡年代記による —
彼の経歴については明らかでない。伝わる資料が極めて少ないからである
諸関分物を著し、寛永六年、十年、十七年などで、弟子達に書状を与
えていたから、このことは佐渡にいたことはわかるけれども、諸関分物が、
どこで書かれて、どこに住む弟子に与えたものかも明らかではない。その
第二巻が、佐渡の河原田町・右田長兵衛氏の家に伝わり、のち佐渡中学の伊
藤勉次氏の手に移り、現在は新潟市の郷土博物館に保管隠されている(8)
という。佐渡で書かれ、佐渡にいる弟子に与えたものであるかも知れない。
彼の経歴を報するものに佐渡年代記仮二(9)がある。これによると、
寛永七年に、
越中の国より、百川治兵衛という算術者来りて、柴田泉屋多兵と云ふ者が
—20—

家に寄宿し、算学を弘む。
寛永十五年に
算術者百川治兵衛、切支丹の類族の開きありて率合せしむる処、弟子証人
に立って依て免す とあるという。10)

3. つづき — 佐渡風土記による
岩木文庫蔵の「佐渡風土記」の原文はつぎのとおりである。
寛永十五年戊辰年
寛永九月百川治兵衛越後於新潟＝死 終日廿四日又＝廿七日 云 改名
百川九也
此者当国にて切支丹の儀＝付牢裳被仰付 弟子共証証＝付出牢 十路盤治
兵衛 云
百川の 水上しらず はてもなし
しかふる道の あらんかきは
此者寛永七年春中国山下からか沢より当国江来へ、治兵衛於当国柴田長者
多兵衛二代兵九郎＝算道之許可状左＝記ノ
此佐渡国相川＝而中野兵九郎殿我等弟子＝候聞此一札改互算道不残可有相
伝者也
寛永十年十月五日 百川治兵衛 花押
弟子 児中
西二月 四日＝以前九也五十四歳にて相伝
一、曲尺各寸火絨百鬼筋
百川忠兵衛弟子
又三郎 新吉 右衛門九郎 彦助 薫蔵 佐太郎 原次郎 仁蔵 太郎助
市蔵 権三郎 与十郎 藤松 長蔵 長吉 仁兵衛 孫太郎 床屋町仁蔵
帯八人
右中野兵九郎兵法＝達シ 寛永十五年四月離波藤兵衛長家より免許状 兵
九郎子孫 柴町 泉屋六郎兵衛＝有之
岩木批の＜佐渡の百川流と新潟の亀井算＞大正六年によると10)
・仁以前之九也・が如前九也・
—21—
百川忠兵衛弟子 又三郎 射者……が
忠兵衛弟子 又三郎（外十六人名等く）に
可否が可有
と変っている。

4. 經歴 — その要約 —
以上の文献から考えると,
○百川治兵衛と忠兵衛は同一人で、九丸とも、十路等治兵衛とも呼ばれた。
○元和八年（1622） 臨陣分物を著す
 隠永六年（1629） 西原田で西崎平六の許状
 隠永七年（1630） 越中国下からか沢より佐俊へ。
 木町泉で多兵方に寄宿、算学を広む。
 隠永十年（1633） 相川で泉や多兵（多兵と同一人か）の二代目兵
 九郎の許状
 同年 五拾四才
 隠永十五年（1638） 切支丹の縦模をかけられて牢役、弟子が獄人にた
 って免れるが
 同年九月廿四、廿七日 新體で滅す。
ということになる。
「相川記」にも「百工」の部「算術」に
慶長 元和、此マサ算術ノ通人アル甲風ス
百川忠兵衛
 隠永七年と 越中下典治略カヨリ来ル 弟子多シ 同十五年九月廿七
日卒
中野兵九郎 昔忠兵衛ノ高弟ハ
川崎宗仙 水尾町ノ人 文右二門師也 百川流とあるという。11)

5. 百川に亀井算の著がある
佐宿年代記、佐宿風土記、諸勘分物、弟子に与えた書状などを総合して、
上のような要約ができるのであるが、果してこれが事実であろうか、ことは
それほど単純ではない。いろいろの疑問があるのである。すなわち、
a. 新編諸算記に百川忠兵衛著とあり、戦後の刊行か
亀井算を述べたもっとも古い現在本は百川忠兵衛著の明曆元年本（1655）
であるが、明曆三年（1657）にも、「しんへんさん記」「算法亀井抄」
とあって、巻末が前者は
新刊 亀井諸算記 三巻 田中文内撰行
新刊 亀井諸算記 三巻 山田市兵衛撰
となっており、内容は、三本いずれも同一である。明曆元年本には序文があ
って百川忠兵衛宛とあり、
志んへんさん記 上巻 の目録がある。
巻末には
右此編算者為少僧抄算千新書記者也
携州大坂 川崎宿兵衛
明曆元年乙未九月吉日 重直 花押
とある。顯永十五年から17年後に出版されている。
b. 明曆版より早いものがあったのではない。
承応二年（1653）初刊、寛文四年（1664）再刊の、覆並和算の
「參同録」に
・…愛にかめ亀井算という無類の術ありとて、近年全部三冊の書にあらず
せらし、人のかたきは何かをたる人の作れりやと、道の奥義くんしくて
著者をかれもじて留りしに…。
とあるところを見ると、1655年版の「新編諸算記」以前に亀井算を述べ
た三巻本があったことがわかる。
山田正重の「改算記」万治二年（1659）は、鹿児島、亀井算、参同
録の誤りを正しているが、この亀井諸算は明曆三年のものと指しているとも
いえるので、明曆版以前に亀井算があった証拠にはならない。
それよりも、もっと年代をかさのけるものに、古川氏の「算法陰華」が
ある。
新編諸算記 上之巻 寛永年中 百川正次著として、
かけさんはいつれもかさのけ事たれば
-22-

-25-
見ちがきを ひたすらおく
を引用している。
川北朝那は「本朝算家小伝」（明治二十三年）に、亀井算算三巻を亀井謙平が正保二年に著さたことを記しており、
福田理記は「算家手箱」（明治十二年）に、
亀井算算三正保二佐渡百川忠治術
と記している。
福田理記の正保二年（1645）佐渡 百川忠治術は「参倉録」の記載と勘案して、分正正しいと思われる。

6. 百川忠治術と忠兵衛は同一人ではないとする議論
いままでに紹介した文献によって、百川忠治術と忠兵衛が同一人であること、数路関治術とも、九也も呼ぶ所もあったが、これに反対する学者もある。例えば平山 корпусは、商除算の和算書（2）において、
・……治兵術と忠兵衛とは時代的にも同一人とは考えられない。僧従の分物の終了に、「脇地城在に人物の記録」という問題がある。僧従の容
分の体裁を求める問題であるが、外側の弧長を三尺五寸、内側の弧長が二尺
二寸、その間の距離は一尺二寸とある。この形と数値は新編算術記にその初
末に掲げられている。この問題の特殊のもので、他の著名人に見られないお
か、数値までと一致しているから、忠兵衛は治兵術に学んだか、治兵術の著
書を見たものと考えなければならない。……小数の位取りの名詞は、分、厘、
専、比、比、比とななるのが普通であるが、分、厘、仮までえて、比は比
に該当できない。

系の代りに新編算術記には、長の「弁もある」となっている。算術記に
は払うとあるが、仮に剣術がある。算術記にも同じく払となってている。僧
従の分物の証を、百川忠治術の著されたものではないが、少しばかり附記があ
る。そこには系の代りに刃となっている。……

下平和那は「日本算学史を研究する上の問題点」（5）に
著者等の百川忠治術が、佐渡の百川治術と同一人であるか否かがさかんに議
論されたことがあった。私は次の理由で同一人ではないと断定したいまず

年代が違い過ぎること。両書の著作年が50年以上もある（ただし
新編算術記は正保二年刊と考えれば約20年）。
しかも新編算術記は内容がきわめて乏しいものであり、新しい工夫が少
しも見られないということによりして百川治術術の著者とは考えられ
ないところである。収入記による説明は本書が一番はやい、そういう意味
では創自性がないわけではない。収入記を主体にして、他の著書から内容
を集めてきたとする方である。すなわち素人が作った算術だと考えても
よいようである。百川忠治術というのも、百川治術術が高名であることを利
用した偽名ではないか。

としている。偽名玄奨はいたずらのように思えるが、平山博士同様、異人説
である。

7. 治兵術と正次を同一人とする議論
遠藤利貞の「増訂日本数学史」に
宽永年間……正次が新編算術記の著者あり
百川正次、治兵術と称す。京師の人なり（或は若く、大坂人なりと、その
説定せせず）。宽永年の末に新編算術記を著させた。その上書に歌あり、
演算上の要件となれば、ここにその一を掲げん。

かけさんは いつれもかかし、事はさ
みちかきを ひたすら
短きとは、位数の少しあと。左に置く数は常に右数を知るべし
この歌の意は、小事に似たるべど。事に乗せ演算上之の要則にして、後世永く
こととなし。遙に新編算術記は正保年間の著者となむ。余、末末本書
を見ず、姑先者之の言に従うのみ。この歌は本書俗記せる者に非ず、古川氏
の伝えるものに依りたり。

帰結法則を行わむると難ども、従上相承する所の算術法をもった遂って興るや
算術におけるの除法は、すなわち商除法なり、此の法九間句法の暗読を要
せするが故に初学者成は入り易し、程大位すのにこれを詰算に施して、算術既
基に記載せり。百川正次これを得て、僅かに改むる所あり、以て門弟子に教
う。その法帰結法則に知かずと難ども、算木に傾聴するものには、却って入り
正保二年（1645）百川正次、亀井算二巻を著させり。これはより書籍を名づけて亀井算と謂う。顧る北国旅行あり。

百川正次、治兵衛と称す。かくて得る所の商除法を記載して、これを門弟子に教ず。而して乗法に至りて、墨絵が流れに依りた。所謂百川流となる。本書の算法、これは亀井算と謂う。或は伝う、亀井算は大橋某（宅帯か）が撰ぶ所の算法なりと、後人の説定せずと難ども、その後法の百川正次なりとすること確定して異説なし。

速藤は、忠兵衛著の新編諸算記を見ることができなかったために、古川の記載からそれを寛永年間の著と記し、正保二年の新編諸算記も正次の著とも信じ、正次が治兵衛であること、その商除法を百川流とも亀井算ともいうと述べたものである。古川のいう百川正次については他に文献も見当らぬから否定すべきである。

8. 治兵衛と忠兵衛と正次を同一人とする説
林鶴一博士の「和算研究集録」下巻（昭和十二年）に
百川正次
忠兵衛・アリ、又治兵衛・オフ、異説・アリ、京師ノ人・アリ、又大坂ノ人・アリ、又・イオラ、新編諸算記、新編諸算記、新編諸算記、新編諸算記。
亀井算二巻アリ……

亀井算二巻アリ

…亀井算二巻アリ、加村共算トシルアルト、

並村吉徳（奥州二本松・ノ）ノ門人十分義（次記）シ、百川治兵衛・ヲ従学ドイ。

村頭義厳

所左衛門女称ス、佐渡・生ノ百川治兵衛・学ト、更・江戸・出々、奥州二本松藤村吉徳ヲ学ブ、延宝元年（1673）算法の進改ヲ著ス……

27

とある。寛永15年（1638）に死んだ百川治兵衛から直接村瀬が教わったということとは無条件に信頼しきれないが、村瀬の「算法の進改」自序には

野村書馬新風より此術に志、生国佐州において百川の流を汲としといへども、勘鏡を濁して算術の底に不得至し、ひたすら早算の所作他に勝れずやとのみ心かけ、朝暮い、遠乗を事とせり、其後武陽江府に有て、並村吉徳を師と頼、難算の好詠を詩、愚労の行をとて算術を研究を磨きにさる事を思へり。

とある。彼の生れが佐渡で、少年のころから百川流の早算に強んでいたことは明らかである。多分百川の流派を学んだということ意味にとるのが正しいようである。それによると、速藤と同じように古川の言による百川正次と信じたのであった。

9. 三上義方博士の推論
親近詠算の研究、第4巻2、4、6号（昭和13年2、4、6月）に発表された「亀井算二巻」は、九十九に當てて「和算書好訳体」をとくとし、算術の歴史を考える上において貴重な文献である。特に、亀井算の伝説に対する批判は、数が少ない文献を引用して詳細を根拠、伝説の非合理性を説いてゆきたい。この論文の中に百川については一応すきのように解釈してみられる。

1. 明応三年本の存在から、正保の刊行といわれる「亀井算」あるいは「新編諸算記」が、全くの別本とは思えない。

2. なぜ亀井算と称したのかからならず、地名か人名が作用したものであるよう。

などと述べ、結論として、

第一に、佐渡に百川治兵衛と云う者があった。元和八年には「諸勘分物第二巻」の書籍を本を弟子へ授けて居るし、寛永六年、七年、十年頃には佐渡で弟子へ書を與え、中には現現在のものもあった。可なり長い佐渡に居った事は疑わし事を要せぬ。

第二に、佐渡で百川流と称して、十段盤の商除法が後世まで伝えられたのは、此人から始まったと思って宜かろう。

第三に、寛永十五年には切支丹の嫌疑で入牢したが、弟子の保証で免ぜられたと云へば、流を嫌疑に過ぎなかったであろう。

—27—
第四に，寛永十五年九月二十四日又は二十七日に残し，二十七日と云う方が確実度が多いらしい。確年は五十九才であったと云う。
第五に，佐渡で残したとも云うし，また新裁で残したとも云う。未だ確実には決定し得られぬ。
第六に，佐渡の人とも云い，越中から佐渡へ来たとも云い，京都又は大阪の人もと云う。充分の事は判らないが，京都地方で学んだ事もあっろうし，京都で教えたと云うのも，史料判らないが，事実であっらかも知れない。
第七に，寛永には佐渡とも記載し難しい。
第八に，寛永年中並に正保二年に「新編諸算記」若くは「亀井諸算記」略して「亀井算」と呼ばれる算書が刊行されたと云う事であり，現在の明治三年版の「新編算記」又は「新刊亀井諸算記」の前身であったろう。現在は，著者名並に刊刻地の記載はないが，元も大阪百川忠兵衛又は百川正次編であったろう。
第九に，此の百川忠兵衛又は正次，佐渡に居た百川治兵衛と別人ではありませぬ。
第十～第十九（亀井算の伝説に対する推論が述べられている。）
第二十に，亀井算若くは，著名に亀井の文字が入って居る事には，深い事情があろうと事は認められるが，今のところ之を満足に解決すべき雑所が見出されね。
とするものであります。
第七と，第九の推論は，治兵衛と忠兵衛と正次とを同一人と見えてあり，寛永十五年の残を信頼しているところを見ると，正保，明暦の何れの本も，治兵衛の残の刊行と共にしているわけである。
10．治兵衛と忠兵衛は同一人ではない。
私の結論を以下に記そう。かつて，「算算春秋」第九号，昭和34年4月に
1．百川治兵衛と百川忠兵衛は別人であろう，百川正次といっているものは資料が少々から否定すべきであろう。
2．正保二年に初版が出たものであろう。書名は「亀井諸算記」であったろう。
3．著者は百川忠兵衛であり，百川治兵衛の教えを受けた人であろう。
4．明暦元年に「新編諸算記」として再版を発行したものである。
5．百川忠兵衛家を守るというのが正ちらしい。
6．明暦三年に三版を出したものであろう。
7．「亀井算」の著者，佐渡和東の見たのは正保三年のものであったろう。
8．正保三年，明暦元年，明暦三年版ともに三巻であり，内容は大差無いものであったろう。
以上の如く考えている。
と考証したが，現在でも同じ考え方で，強いて訂正を要するものといわれれば，
1．百川正次と云っているものは，古川の算書随筆以外にないから否定すべきであろう。
2．「亀井諸算記」または「亀井算」であったろうとしたいだいである。
かくて私は，
1．佐渡風土記（岩木文庫蔵）の百川忠兵衛とあるところは治兵衛が正しい。
2．算書随筆の，寛永年中，百川正次者は間違いないと思う。
百川には，治兵衛，忠兵衛，九色，正次のほかに「新刊諸算記」の巻末には，重直，花押があり，さらに亀井算の伝説に述べられた名の一算がある。これらはつぎに記と年表のように分けるのが至当ではないか。14
佐渡に百川流があって，村瀬義益や年少のことを学んだことは前に記した。
辺もない，狭い土地にいたにもかかわらず，その名が広く知られていたことは，
田原嘉明の「新刊諸算記」承応元年（1652）の巻末に
当代算法の祖師，亀井の吉田，佐渡の百川，此かたがたをなし置き，下愚
が分として，算法記と外題をうつ事は誠におそれあり
といった儒から出版されている。実事を見ても理解できる「亀井算記」の著者吉田光由と百川治兵衛とを同列に見ているとの書きぶりには注目してよい
点があると思う。
下下の言によれば，新編諸算記の内容は極めて乏しく，独創性が見えあら
ず，素人が作った算書だと考えて良いという。
同じ見解は大矢真一の＜日本数算史＞その8 龜井算＞にもある。

新編諸算記の4-7項のうち、22項を除いた25項目が亀井算記にもあり、数多くの項目が重複するものもある。全体の数の3割弱が亀井算を解決している。亀井算記の22項目についても、他書にもとづいたものがある。数学的にも整えられているというものが亀井記のすぐれた点であったが、それにくらべれば新編諸算記は内容的に相当劣っているというより仕方がない。

という見解を示されている。私には「諸勤物分第二巻」の数学的位置、「新編諸算記」との関係性などのことはわからないが、元和八年と明暦元年（または正保二年）との本の相互性を調べる所あるのか。20年近くの歳月と、和算の発展といった点を考慮すれば、治兵衛と忠兵衛が同一人であるかどうかは明らかにし得るしさ、そうすることが数学史家の務めだと思う。他方本篇で申訳なきが、そら分についても記載のない「諸勤物第二巻」と「新編諸算記」とを比べただけでは、論題に「弗」「欠」の二字が現方にあるとだけしかいないのである。

百川 治兵衛

改名九世 通称そら分治兵衛（佐渡風土記による）

<table>
<thead>
<tr>
<th>年紀</th>
<th>元和八年</th>
<th>寛永六年</th>
<th>七年</th>
<th>十年</th>
<th>十二年</th>
<th>十五年</th>
<th>十五年</th>
</tr>
</thead>
<tbody>
<tr>
<td>西暦</td>
<td>1622</td>
<td>1629</td>
<td>1630</td>
<td>1653</td>
<td>1655</td>
<td>1658</td>
<td>1658</td>
</tr>
<tr>
<td>著作</td>
<td>諸勤物分第二巻</td>
<td>河崎平六の許状</td>
<td>勧進表</td>
<td>兵九郎の許状</td>
<td>龜井算</td>
<td>誤返しの許状</td>
<td>新編で残（9月24日か27日）</td>
</tr>
<tr>
<td>場所</td>
<td>現在</td>
<td>現在所在不明</td>
<td>佐渡</td>
<td>佐渡風土記</td>
<td>佐渡</td>
<td>佐渡</td>
<td>新編</td>
</tr>
<tr>
<td>出典</td>
<td>佐渡</td>
<td>富井光</td>
<td>柿田</td>
<td>佐渡風土記</td>
<td>相川</td>
<td>佐渡風土記</td>
<td>新編</td>
</tr>
</tbody>
</table>

百川 治兵衛

名は重直

年紀 | 西暦 | 著作 | 出典
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>正保二年</td>
<td>1645</td>
<td>龜井算</td>
<td>佐渡琴行</td>
</tr>
<tr>
<td>明暦元年</td>
<td>1655</td>
<td>新編諸算記</td>
<td>龜井算</td>
</tr>
<tr>
<td>明暦三年</td>
<td>1657</td>
<td>五箇山さんき</td>
<td>龜井算</td>
</tr>
</tbody>
</table>

※ 石黒はこれを二巻としている。

註1. 安永四年（1775）早算手引集

文化三年（1805）加目位算早割即席伝

そのとく 龜井算 亀井算伝

を刊行した。

註2. 金子健氏はこれを算道に関する「弟子状」と呼ぶことが正しいということ。月刊算学界14改号、亀井算研究ノート(4)昭和39年6月号

1. 文中免許を意味する文言が全くない

2. 免許の項目（目録）がない

3. 院名が本院でなく「弟子衆中」である

4. 算道残らず相伝うべき有資格者である。と解すべきで、相伝えたとほられ

註3. 金子健氏によると

この者（河崎平六）は私（治兵衛）の弟子に加えたら、兄弟出である君たち（弟子衆中）は、君々の知っている算道を残らず伝えやってもよろしい

と解釈できるという。前掲論文

註4. 物の存否不明、著者や博士書きの写真がある。博士の「はまなしひに」にはトレスしたものが思われるものが全集されており、たて17.5 cm×28.5 cmであるという。金子健亀井算研究ノート(1)月刊算学界13号号

昭和38年6月

註5. 河原田は現在佐和田に住んでいる。

註6. 佐渡風土記河種類もあるという。新潟県立佐渡高等学校の著名文庫
（舟崎文庫ともいう）に三種類あり、これには寛永十五年の百川の記事はないという。そこで紹介したものは岩木誠文庫蔵の佐渡風土記の原文である。
金子勉の『上掲論文』による

注7. 『刊行年月』132号 昭和38年6月

注8. 明治前日本数学史 第1巻 P30

注9. 慶長六年から天保九年までの、佐渡の奉行所の雑記を集めたもの、昭和十年佐渡教育会から刊行されたという。上掲書

注10. 上掲書および岩木誠 佐渡の百川流と新潟の亀井算は金子勉 亀井算研究ノート(5)月刊数理144号昭和40年1月に全文が掲載されている。

注11. 著者、成立年不詳

注12. 『刊行年月』66号<昭和32年6月>

注13. 数学史研究第7巻1号 1969年4〜6月

注14. 平山博士の前掲論文によれば、重直は百川の名であるか否か判明しない*とある。

注15. 『刊行年月』123号 昭和37年8月

注16. 封紙にしても　
二巻とするもの 日本古典全集解題、林徳一、遠藤利貞
三巻とするもの 川北朝郁、参談錄、三上義夫、藤原松三郎、平山雅　
一巻とするもの 山本格安の遺籍算法、高橋徹之助の算話拾葉集　
と意見が分れる。

教育

我国における不等式指導の歴史（4）

鶴木 久次

1次不等式

(1) 明治19年

(3) の「不等式算法」を用いて、例として

\[
\frac{x + 2}{5} > \frac{3}{4} \quad x + 9 > 4
\]

乗 二 両

+ 项

10x + 8x > 15x + 4 5

移 各

\[3x > 4 5\]

除 本

\[x > 1 5\]

と説明し、次いで「2x + 5y > 16, 2x + y = 12 二式アリ、ノ限界

コ求メ」を不等式より方程式を解いて、y > 1, y = 1を方程式に代入して、

2x + 1 < 12, より, x < 5 \frac{1}{2} , と解している。そして練習問題に「x<-b

\(c + d\)」等がある。③では、他の問題に「2x - 5 > 3 1, 3x -

7 > 2x + 1」エミタスノ整数値ヲ求メノ」がある。

不等式については、この1次不等式までに終わっているだけに、2元

1次不等式は取り扱えないという感が払われない。

(2) 明治20〜34年

採用されているのも8種で5割に充たない。不等式を軽く、特に項目を立
でずに扱っているものの5種、それには「一元一次不等式解法」、 「不等式解法」などが1種づつで、分散している。⑥、⑦では「一元不等式解法」、 「二元不等式解法」と一、二元の場合をきちんと区別している。

解法はいずれも基準性に基づく代数の解法でグラフ利用は見られない。
すなわち、一元一次不等式では⑥の

\[
\frac{x + 2}{5} \geq \frac{3x + 3}{4}
\]

先分分数を消去スレバ

10x + 8x \geq 15x + 60 \quad \text{を得}

次に移項法を用うと変形スレバ

5x \geq 60 \quad \text{を得}

由ベ \quad x \geq 12 \quad \text{を得}

というような変換であるが、bonusとしては⑦で

\[
\frac{2}{3}x - 2 \leq 2x - 1 = \text{通スル} \quad \text{变数値ヲ求メム}
\]

について、上の

⑥のように表現し

\[
\begin{align*}
 x & > -\frac{35}{8} \\
 & > -\left(4 + \frac{3}{8}\right)
\end{align*}
\]

-4, -3, -2, -1, 0, 1, 2, 3 等値で4個以上が以下答えトス

答 負4個以上

のように答えを示している。

文字係数のものを採用しているのは2種で、絶対値記号のある不等式はな

い。

次に連立不等式については、一元のものを採用は6種で、内、全等式値を求
めるもののみのもの3種、他は3種は全等式、一般解共に求めるものを採用
している。このように全等式値を求めるものはいずれも扱っている。

次に、二元のものを採用は7種で、内ロ方程式同士のもの3種、方程式・不
等式の連立2種で、この方方癫痫は2種となっている。解法については、⑥で

\[
\begin{align*}
 2x + 5y & \geq 3y, 2x + y = 2.4 \\
 2x & = \text{通スル} \quad \text{解メツ}
\end{align*}
\]

解法：所設ノ不等式ノ両節ヨリ所設ノ方程式ノ両節ノ通スルタキヘ

-34-
以上のように、
(1)採用が少ない。
(2)連立方程式を扱っているものが少ない。
(3)二元連立方程式の解についての注意をし。
等、低調そのものというべき時期である。

(1)明治45～大正8年
採用数11/16と殆どが採用している。特に項目を立てず基本性質の説明につ
づいて扱っているもの5種。他はそれぞれ1～2種づつ「一次不等式」「条
件附不等式」、「不等式解の方法」等の項目で扱っている。
解法はすべて代数的方法でグラフ利用などは見られない。

連立方程式については
一元の場合
一般解のみのもの…………2種
両方あるもの…………………2
計4種

二元のものは

不等式同士のみ………………1種
不等式・方程式連立方のみ…2

計5種

この内、解についての必要十分条件の注意をしているもの1種のみ、ま
た、図示させ領域の観点にたつものはない。

次に、文字係数のものを採用しているのは2種、絶対値のある不等式はどれ
にも採用されていない。

以上のように、連立方の方程は手を伸ばさず、簡潔に指導するという傾向
のようだが、二元一次連立方のものが多かないことは教育的配慮のないされた現
象とも考えられることがある。何、@で

「例、3x - 2 > 5x - 8を解ね。」

\[x < 3, \quad 3 \text{ 偶小数 } x \text{ イノルテノ相へ与不等式ノ成立セシム}
\]

若シ、3 = 3ナラバ 3x - 2 = 5x - 8

故ニ、方程式へ不等式ノ特別ノ場合＝通ギメ

計9種

二元のものは

不等式同士のみ…………2種
不等式・不等式連立方のみ…3

計9種

この内、解についての必要十分条件の説明のないものは2種のみであり、こ
文字係数のもの採用は8種で大体前期同様の割合を保っている。
次に遂立不等式については
一元のものは11種で採用（内、整数解を求めるもの3種）、いずれも
代数的解法である。
二元のものは不等式同士のもの8種、不等式・方程式の遂立7種で採
用している。その後の解析は、グラフを利用して解の位置を示すもの
のため、文脈によっては使われるもの多い。
（Ⅷ）昭和17～21年
（Ⅸ）は採用していないが（Ⅹ）では、グラフを利用して解を求め
た。このことは、解の位置を示すものとして、一次不等式の解法であ
る。その後の解析は、グラフを利用して解の位置を示すものである。
問題を必要とするもので、遂立不等式はなく、文字係数のものがある。
この程度の内容に終わっている。
（Ⅺ）昭和22～25年
新制中学の（Ⅺ）では「一次不等式とグラフ」で二人的進行を示す一次関数
のグラフを利用して解の位置を示す方法を示しており、一次不等式の
解法を示す方法を示しており、その後の解析は、遂立不等式の解の
位置を示すものである。
次に、高校の（）の解析では「一次不等式」で、$y = \frac{1}{2}x + 3$ のグラ
フを示し、それより$x > 0$ なるxの範囲の解の考え方を示し、その後同様に
グラフを利用して、$\frac{1}{2}x + 4 > x + 10$ の解の考え方を示し、それから、一次不
等式の解法を基本に解の位置を示す方法を示し、解を求める。その範囲
に「$a + b$」、「$2y > 3x - 7$」の範囲を示すものである。遂立不等式はなく。
以上のように、一次不等式に関しては、高校では解の位置を示す形
をとる。解の位置を示す形をとる。解の位置を示す形をとる。解の位置を示す形
をとる。
積極的であるように思われる。
（x）昭和35年
採用数8/8。「一次不等式」なる項が最多で5種、大体この項に固定化する傾向であるが、この中には基本性質、簡単な不等式の証明、も含めているものがありすっきりと一次不等式のみを扱うようにになってしまっている。

解法は

d）代数的解法のみ………………5種
グラフ利用と両方法………………5種
でグラフ利用が表面化している。
連立不等式については
一元の場合
整数解のみの場合………………1種
一般解と両方……………………7種 計、8種
二元のものは、不等式同士の連立は5種で採用、いずれも領域の観点で
指導し、代数的解法を述べているものはない。不等式、方程式の連立は（b）
で採用しているだけである。
次に
文字係数のもの……………………4種
絶対値の入った不等式…………3種
となっている。
以上のようになると
(1)グラフ利用の解法を先に指導する、グラフ利用を項目をたてて指導する、グラフ利用が積極的である。
(2)二元連立不等式は領域の立場で指導することが確立された。
(3) 3x + 1 ≤ x + 2 というように等号も含めたものはこれまで殆ど見かけなかったが、どれも見られるようになった。
などが目につく点であるが、もう一歩すっきりしたものに欠ける感じがする。
（x）昭和35年
採用数20/20。「一次不等式」なる項が10種で最多、次は「一次不等式の解法」が5種、「一元一次不等式」が2種、他は「不等式」、「不等式の
解き方」などで扱っている。不等式の中で、この一次不等式をすっきりと独立した形で指導する傾向が強いて考えられる。

解法は

d）代数的解法のみ………………6種
グラフ利用と両方法…………14種
そして、この両方法採用のもので、グラフ利用を先に指導しているのが1種
しかないと考え、代数的解法→グラフ利用の解法という指導が大勢であると考えられる。
次に連立不等式については
一元の場合
一般解のみ………………15種
整数解のものもある…………7種
というように整数解を求めるものは影が薄くなっている。二元のものについ
ては、数学Ⅱでの領域で指導することが確立され、構造において方程式、不
等式の連立を代数的解法で求めさせる問題をとりあげているに過ぎない。
また、
文字係数のもの………………9種
絶対値の入った不等式…………9種
と、絶対値のあるものの指導は一般化している。
このように一次不等式の指導はすっきりと確立されたと言える。そして、
その解の数直線を利用しての理解、その繐がりから絶対値の不等式がとり
入れられて来たことが目立つことであり、関もなく、これが集学概念への構
成しもなったものと思われる。
（x）昭和38年～現在
採用数19/19。「一次不等式」なる項が最多で12種、「一元一次不等式」
が3種、「一次不等式の解き方」が2種、他は「不等式の解き方」、「不等式」
等となっている。また、グラフ利用の解法、絶対値の不等式、をそれぞれ別
項目で扱うものが1〜2種ある。

解法は

d）代数的解法のみ………………13種

-40-
グラフ利用と両方法……… 6 種
で、両方法採用のもので、グラフ利用を先にしているのは 1 種に過ぎない。
連立不等式については
一元の場合、一般解を求めるのは全部で採用、整数解を求めるものは 8 種
（内、文章題のものが 6 種で大勢を占めている）である。
二元の場合、大半部分「領域」の方で指示しているが、代数的解法を。
不等式同士のもので 1 種、方程式の連立のもので 3 種、が指示している。
次に、絶対値の入った不等式 14 種で採用と多いが、文字係数のものは
4 種しかないに過ぎなさ

以上のようしたことから
(1) 集合を結びつけてのとり扱いを説明しているのは 4 種、また、命題の指
導材料に使っているのが 3 種ある。
(2) 一元連立でこれまでは整数解を求めるものが比較的多かったが、今期は
何らかの処へ、そのとり扱いは文章題で、という傾向となっている。
(3) 二元連立は「領域」に移行された形であるが、一元不等式、二元不等式
の区別が明確でない感がある。
等が目立つことである。

2 次不等式
(1) ～明治 19 年
 とり扱っていない。
(2) 明治 20～34 年
 採用数 4/22。二次三項式の問題の解釈の存在という色が厚くで、「二次
三項式の図解・符号」及びこれに類似した問題で扱っているもの 4 種、「二次
不等式の解答」が 2 種、特に問題のないもの 1 種となっている。
 解法は、一般的に $x^2 + bx + c$ に対して $d > 0$ と場合分けしがとの式的符
号を考えて解を求めるという方法のみのもの 5 種と大部分で、他は、(2)で
の。
\[
(x^2 - 5x + 6 > 0) \text{を解け。}
\]
左項の式因式分解 (x-3)(x-2) > 0

\[
-42-
\]

今、上式は $ax^2 + bx + c$ 型形 $x > a$
$x > 5$ より大数の基準が $x > 3$ 及び $x > 2$ へ正数の基準
である。
又、$x > 5$ と一般的 b という負の部分 $x > 2$ へ正数の基準
gと
\[
(x - 3) (x - 2) > 0
\]
又、$x > 5$ より小数の基準が $x > 3$ 及び $x > 2$ へ正数の基準
\[
(x - 3) (x - 2) > 0
\]

故に上記不等式は、適當な応用值の値が次に示す。
$x > 3$ 又は $x < 2$

以上のように、とり扱いの位置づけは未だといえるところである。
(1) 明治 35～44 年
採用数 4/22。「不等式の解答」、「二次不等式の解答」を含む機に、特に
問題のないもの、各 1 種つづくとなっている。

解法は。

(2) これは、同一著者であるので

\[
3x^2 + 8 - 10x \geq 0
\]

解け。

\[
\begin{align*}
3x^2 + 10x - 8 \geq 0
\end{align*}
\]

即 $x = \frac{x - \frac{2}{3}}{(x + 4)} > 0$

故に、$x > 2$ ト $x + 4$ トは同符号ナルを要

即に、$x > 2$ ト $x < -4$ ト数ナルを能ハズ

答 $x > \frac{2}{3}$ ト

他は、根による場合分けをして因数の符号を考えて解くもの 1 種、この方

方法を説明した後「……一般は $x^2 - a$ と $x - b > 0$ もしくは $a > b$ ナラ

$bx > a$、或は $x < b$ ナラ」というように不等号の向きで考える簡便法を述

-43-
べているもの1種。となっている。要するに、因数の符号を考えて解くというのが主体であったと思われる。これは（ⅱ）期での二次三項式の符号を考慮した傾向と大分異なる点である。また、絶対不等式を扱っているものの1種、連立方不等式は、②で「\(x^2 - 2y < 2x^2 - 3, y - 3x + 2 = 0\)」が問題にあるのみである。

以上のように、一次不等式同様、低度な時期である。

（4）明治45～大正8年

採用年11/16。「二次不等式」、「条件付不等式」なる項がそれぞれ3種、特に項目をし、問題にあるのみがそれぞれ2種、「不等式ノ解方」1種となっている。

解法は、

(1) 側による場合分けをして因数の符号を考えて解く方法、例えば②で

\[\begin{align*}
3x^2 - 18 - 3x & \leq 0 \quad \text{(x = -3) (x = 2)} > 0 \quad \text{と因数分解した後}
\end{align*}\]

より解くと、\(x = 2, x = 2\) となる。

(2) ⑥で \(2(x^2 + 1) > 5x\) を解くのに \((x-2)(2x-1)<0\)

と変形し \(x = 2, 2x-1 < 0\) 又は \(x = 2, 2x-1 < 0\) と場合分け

して解いた後、その解の図示で

\[\begin{align*}
& x^2 - 6x + 8 < 0 \\
& x^2 - 10x + 2 > 0
\end{align*}\]

と、数直線が逆を上に、\(\infty\)を0と記してある。

連立方程式は②で「不等式同様」、「一次方程式と二次不等式」があるだけである。

「6x > 2x^2 + 13」など絶対不等式をつり挟んでいるもの3種、また

文字係数のものは2種に見られる。

以上の如く、連立方程式には及んでいないが、一般的にとくに扱われて来たようでは、解法は「不等号の向きによる簡便法」、「因数の符号による場合分け」、「根による場合分け」の3種類である。

（5）大正9～昭和5年

採用年21/27。内、外縫（または、これに類する補充的な場所）にあるもの1種、で正式教材としての位置づけはされされていないにもかかわらず、見直されつつあったことは、そのとり扱っている項目が「二次不等式」が5種で

最多、他は「絶対的不等式・条件付不等式」、「一元二次不等式ノ解法」、
（ⅱ） $x > 5$ ナル場合、成立
∴ $x < -3$ やり $x > 5$

と解しているが、このようなものは 5 種ある。

（c） ⑨では「例 1. $x^2 - 2x - 3 > 0$」の解答を
解） 左辺 2 因数分解して

$$(x-3)(x+1) > 0$$

此ノ左辺ガ正ナルドラメヘ、因数 $x = 3, x + 1 = 0$ ガ共＝正
ナルカ、或へ負ナルカナリ。

先ノ共＝正ノトキ

$x - 3 > 0 = シテテニム＝ = x + 1 > 0$

ナルトキハ $x > 3 = シテテニム＝ = x > -1$

而シテ $x = 3$ 及び -1 何レヨリモ大極さメヲスヘハメヘヘハハハヘハヘハハヘHar

以下、共に負、異符号の場合に分けて解く。これに類するものは 9 種あ
る（内、⑨では因数の大きさを考えて場合分けしている）。

（3） ⑩では前項において、二次関数のグラフを導く（点をプロットする程
度の簡単なもの）って、二次不等式について因数の符号による解法を述
べた後「グラフヨリ解法」として、グラフを図示して、その考え方を
述べているが、これと類似のグラフ利用の方法を採用しているのは 7 種
ある。

（3） ⑩では符号表によって解いているが、この方法は、この 1 種だけで
ある。

以上のようであるが、二次三項式の符号を調べ、という観点が強いよう
である。

（e） 解法指導順について

上の(1)～(d)による分類すると次のようである。

<table>
<thead>
<tr>
<th>A のみ</th>
<th>G のみ</th>
<th>B のみ</th>
<th>C のみ</th>
<th>D のみ</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 種</td>
<td>5 種</td>
<td>2 種</td>
<td>2 種</td>
<td>1 種</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$D → B → A$</th>
<th>$B → A$</th>
<th>$A → D$</th>
<th>$B → D$</th>
<th>$B → A → C → D$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 種</td>
<td>1 種</td>
<td>1 種</td>
<td>1 種</td>
<td>1 種</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$D → C → A$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 種</td>
</tr>
</tbody>
</table>
このように1方法のみもののが多い。然し、2方法以上のものも約1/3として、指導面での工夫がささられて来たことを示すものと思われる。

以上のことを考えると
(1) \(x^2 - x + 1 > 0\), 6\(x^2 > 2x^2 + 13\)算の絶対不等式を扱っているのが5種で、これらのは何も「不等式の証明」ではないことを扱っていない。なお、本節でこれら絶対不等式を扱わないものは「不等式の証明」でも扱っておらず、ということにより本章の絶対不等式は「二次不等式」で扱うのが通例であったと考えられる。
(2) 連立1次2次不等式を扱っているのは5種（いずれも問題のみ）と少ない。
(3) 文字係数のものは3種で採用しているだけである。
(4) グラフ利用、符号表利用、が登場してきた。特に、グラフ利用が表面化している。
などが目立つ点である。

昭和6～16年
採用数21/35（採用中、選択は2種、採用中、基本課程用は1種）
本文中は3種（内、問題のみ見2種）、総合・補充の編で8種となっており、附録で採用、というものが少ないのは前期と大分異なる点である。このように増設分類における正教材としての位置が確立されたようである。
取扱っているのは「不等式解法」、「一元二次不等式・解法」、「条件付不等式」がそれぞれ4～5種と多い。
次に、解法については（問題のみ採用の2種は除外）、(v)期までの記号A〜Bで分類する。
(1) 各解法の採用教科書数
- D 12種 - C 5種
- A 10種 - B 4種
- E 6種
でDのグラフ利用、Aの不等式の向きによる方法、が主体となり、「図解＝～不等式・解法」など項目をたてていっているのが3種ある。B、Cの因数の符号を考えて解く方法は少なく、Bの符号表利用が比較的多い。

昭和6～16年

昭和7～22年

昭和22～25年

新制中学校用では扱っていない。

解析1では「二次不等式」で2次関数のグラフに基づいてグラフによる解法を述べ、次に、\(D > 0\)に分けて代数的解法を説明している。問題に「連立不等式、\(3x^2 + 5x + 2 > 0, 4x^2 - 4x - 3 > 0\)」等がある。
「二次関数」でこのグラフ指導後に、不等式を指導するというために、グラフ利用の解法が先行しているのは、1次不等式のときもそうであるが、現
昭和31～37年

採用数20/20。「不等式の解き方」、「二次方程式と二次不等式」等の項もあるが、「2次不等式」が16種で圧倒的に多く、方程式同様に不等式も明確に区別して指導する体系が作られている。数学3では「グラフ利用」、「不等式の向きによる簡便法」を追加指導するものが3種ある。

解法は（記号は(4)期のA～Cを使用）

(4) 各解法の採用教科書数
- D 8種
- E 2種
- A 5
- B 1
- C 2

(5) 解法指導順
- D → A, D → E, E → D, A → C → D, C → B, B → C → A, D → E → A, A → B

このように、「グラフ利用」がどれも導入されており、「因数の場合分け」が盛りとなっていている。また、「符号表」が余り利用されていないのが目立つことである。

次に、連立一元等式は7種で、一元二次の絶対不等式は7種、文字係数のものは2種で採用されている。尚、絶対不等式については、この「二次不等式」でのみ3种、「不等式の証明」でのみ1種、他は両方で扱っている、というようになっている。

以上のようになる

(1) 関数（グラフ）指導が強調され、関心をもたらすための影響が、この2次不等式も、グラフ利用の解法がどれも採用するという結果になったようである。これは戦前の二次方程式の符号を考察し、ということとより2次不等式の解法をとらえる傾向にあったことにとらえ、現代化、数学科教育の意義的な発展、発展を意味するものであろう。

(2) 現在、殆どの教科書でとりあげ、また、その遺稿も大正中頃と考えられる、符号表利用が余り用いられなかったのは民かな奇妙な感じを受けることである。

などが考えられることである。
以上のところから、
(1) 線数指導との関係が明確化されて来た。
(2) 運用不等式、絶対値の不等式、とり扱いが多かったのは集合指導との関係の指向を暗示するものではなかろうか。などと考えられる。

昭和38年～現在
採用数19/19。「2次不等式」または、これに類する独立した項で扱うものの17種、「不等式」を1次不等式と一緒に指導するものの2種で、はっきりした位置づけがなされている。更に、これらで指導後、「関数とグラフ」「関数」等の章で、代数的解法、グラフでの考え方の両方を指導するというのが大勢である。

次に、解決法は（記号は(6)期の A,E 使用）
(1) 各解法が採用教科書数
 E…………………16種 A…………………15
 D…………………16 C…………………5

(2) 解法指導順
 E→A→D…………………10種
 C→E→D…………………2
 E→D→A，A→D，C→A→E，E→A，C→D，C→A→E→D，…………………各1種

以上のよう、導入は*符号表*で、そして*不等号の向きによる簡便法、となる、更に*関数のグラフ*の応用の一例として適用する、というのが主体のようである。

連立不等式については、1次のもはすべてで採用しており、1・2次連立は8種で、また、2次で整数解を求めるものは4種にある。その他のものでは

絶対値の入った2次不等式…………12種
文字係数のもの……………………5
2次の絶対不等式……………………17

となっている。また、新教材の集合、論証、どのような所での扱い方をみると、

-52-

-積極的に集合という形式で扱っているもの…………2種
-解についてのみ集合表現をしているもの…………2
-命題の関連に採用しているもの……………………6

このように多くはないが、現代化ということへの活用がもうかがえる。
また、2次方程式の根の判別、2次不等式の解法は以前より、殆どの教科書に見られるものであるが、今期では「x²-(a+1)x+b<0」の解が
1<x<2 であるように、a, bの値をきめるというような問題が散見するようになっている。

以上のよう、1元2次不等式、連立不等式、2次の絶対不等式、解法が東となります。それに、集合、命題、などの分野との相関が現われているというのが現状である。

その他の不等式
（高次、分数、無理、指数、対数、三角等不等式、不等式の応用、等）
(1) ～明治１９年
とら扱っていなかった。
(2) 明治２０～３４年
採用数7/2。「二次三項式ノ値ノ符号」を前提とする encrypt は似た問題に散在している中で、我々では「二次以上ノ不等式ノ解法＝ナベイ」、αでは「分母＝未知量Ａノ不等式ノ解き方」と区別しているのは差異である。また、例題として説明してあるものを3種、は問題にあるだけである。

種類としては、4次不等式が1種、5次不等式が1種、分数不等式6種、というように1・2次不等式に次いで、まず分数不等式が着目されたようである。また、算術指導以来、比例が指導の主部であった影響もあるようか。

解決については、4・5次不等式では根による場合分けで因数の符号を調べて解くという方法であり、分数不等式では

・同値換整等式に直して解く………………3種
・分母の平方をかけ、等式に変形して解く、及び各因数の根による場合分けをして因数の符号を調べて解く…………1種
・間にあるだけで、解法不明………………2種

-53-
とっている。
連立不等式は（1）で問題に「\(\frac{1}{x} + \frac{1}{y} > 8\)、\(\frac{1}{x} - \frac{1}{y} = \frac{2}{15}\)」があるのみである。
1・2次不等式も不十分だった時期とて、この程度に留まることは当然のことと思われる。
(4) 明治35〜44年
採用数2/22。いずれも練習問題にあるのみで④で3次不等式、④で分数不等式が出題されている。
不等式指導不十分の割合に分数不等式などが目立った(1)期に較べると、数学全体としては一応のままりをして来たためとも考えられないことはない。
(5) 明治45〜大正8年
採用数11/24。内、問題にあるもの3種、特に題目のないもの2種、「二次ノ不等式」で1種、「条件附不等式」で1種とあっており、半数近くで採用しているものの、実際は余り配膳されなかったというべきであろう。
その種類は、分数不等式が2種、高次不等式が3種（2、3、4種）いずれも1種だけとなっている。1・2次不等式に次いで分数不等式が考えられるというより。
次に、解法についてみると、問題にあるだけで不十分ものが3種（2次不等式の解法から察して、因数の符号を見えて解くものと思われる）。\(\frac{x}{x} + \frac{x}{x} > 0\) を、両項は同符号をすることを要するから、\((x + 3)^2 > 0\) を解くことと同様、同値を数不等式に変形して解いている。\(\frac{3}{2} > x\)、\(x > \frac{3}{2}\)については、\(\frac{x}{x} < 0\) としつつ「分母、子が反対符号 Ally より短く」限界に満足セメンテレル、即ち、
\(\frac{5}{3} > x > \frac{3}{2}\)
としている。
(6) 明治39〜昭和5年
採用数11/27。内、問題のみのもの6種、「二次ノ不等式」で2種、他は「条件附不等式」、「不等式ノ解法」等各1種となっている。その種類は、分数不等式のみ5種、高次不等式のみをし、両不等式2種で、他の不等式は見られない。以上のように、分数不等式事がいう傾向が前期より続いている。
解法は、問題のもののみは除外、先づ分数不等式では
(f) ④で「例3」の解は、\(x \geq \frac{3}{2}\) となる。
解）両辺ノ \(\frac{x}{x} - \frac{x}{3} = \frac{x}{3} < 0\)（同仮ノ反対符号ノ有スルキノ限界に満足セメンテレル、即ち、
\(\frac{3}{2} > x \geq \frac{3}{2}\)
（4）分数不等式
採用20種中、例題にとりあげているもの13種、ということより、解法の想定は未だ指導されていないと考えられる。形としては、分数不等式を一般に2次という程度のものである。

解法は、

分母の平方をかけ整式不等式に変形して解く…………8種
符号表

分母子の符号の場合分けをして……………………3

（5）高次不等式
採用6種中、例題にとりあげているもの4種、いずれも3次不等式のみである。解法は、符号表が2種、他は因数の符号による場合分け、そして、グラフを示すものである。

その他 13）で無理不等式と仮定せずに示す方法を例題にあげている場合（対象外）で、不等式に示すもののみ、三角不等式は

\[\sqrt{3} \sin \theta - \cos \theta > 0, \quad 0^\circ \leq \theta \leq 360^\circ \]

対数不等式

\[a < 1, \quad a > 0, \quad x > 1.5 \log_5 (x-1) + \log_5 (2x-3) > \log_5 (5x+27) \]

がそれぞれ1問ずつあるだけである。

次に、分数不等式の解法、を中心として、他の不等式解法との関連をみると次のようにになっている。（符号表利用は○印）

<table>
<thead>
<tr>
<th>教科書</th>
<th>2次不等式</th>
<th>高次不等式</th>
<th>分数不等式</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>(問のみで解法不明)</td>
<td>(不採用)</td>
<td>○</td>
</tr>
<tr>
<td>112</td>
<td>(不採用)</td>
<td>(不採用)</td>
<td>○</td>
</tr>
<tr>
<td>117</td>
<td>(因数の場合分け)</td>
<td>○</td>
<td>(因数の場合分け)</td>
</tr>
<tr>
<td>114</td>
<td>○</td>
<td>(不採用)</td>
<td>(間のみで解法不明)</td>
</tr>
<tr>
<td>115</td>
<td>○</td>
<td>(不採用)</td>
<td>○</td>
</tr>
<tr>
<td>116</td>
<td>○</td>
<td>(不採用)</td>
<td>○</td>
</tr>
<tr>
<td>112</td>
<td>(不採用)</td>
<td>(不採用)</td>
<td>(間のみで解法不明)</td>
</tr>
</tbody>
</table>

- 56 -
以上の如く，この時期における2次不等式までが精々で，外は問題のための問題という感が深く，その中において，(4) 無理数不等式の採用，そして「一元高次不等式」解法及び分母分数不等式ノ解法で
「例1. \(x^2 - 5x^2 + 2x + 8 > 0 \) ェ解ケ」を因数分解し変形後，符号表によって解き，その後，\(y = x^2 - 5x^2 + 2x + 8 \) についての数表を作り，これよりそのグラフを示す。
「コレ見ルト，上ノ結果ノ正シコトガ側明聴＝ナル」と述べ，次に，
「例2. \(\frac{(x+3)(x-1)}{x-6} < 0 \) ウ解ケ。
解）分数ノ値ガ負トナルタメノ＝分母，分子ガ異符号ナルコトヲ要シ，又，ソレヲ十分デアルノ，依ッテ，分母ノ分子ノ積ヲ負ナルノモノノ範囲ヲ求メラレヨイ」
即ち \((x+3)(x-1)(x-6) \leq 0 \)
「解イテ \(x \leq 3 \)，又ハ \(1 < x \leq 6 \)」
と2次不等式の段階より一歩進めた不等式解法の拡張，そして，その解法の系統化への配慮がみかかえるのは異様である。
(vi) 昭和17～21年
(4) はなく(8)で2次不等式の間につついて「\((x-1)(x-2)(x-3) \geq 0 \)」
等の3次不等式のみが見られる。2次不等式のことで推察するに，後によく場合分けをして解くものらしい。
(vii) 昭和22～25年
新制中学校用にない。解法Iで例題として説明する，ということはなく，「二次方程式」の章の題目で
「\(y = x + \)」のグラフは，\(x > 0 \)ではどんな曲線か，\(x < 0 \)では，」なる
間の後に，\(\frac{x^2 - 4}{x + 4} > 2 \) を解け」，「\((2-x)(x^2-x-6) \leq 0 \)」
「\(\sqrt{x-1} < 3-x \)」等がある。解法は不明であるが，指導の場から解するのに，グラフ利用を試みているように思わせる。
これだけのこととて，不等式解法は1・2次不等式が限度であったようである。

(IX) 昭和26～30年
種類は別として解法用8／8。「二次不等式」の節が4種で最多，同のもののが1種ある。
種類は，分数不等式7種（内，問のみ4種），高次不等式7種（内，問のみ2種），無理不等式4種（内，問のみ2種），対数不等式1種，となって
いる。同，高次不等式の種類は
3次不等式のみ…………4種
3・4次不等式…………3種
となっている。

解法については
分数不等式では，いずれも符号表による解法（内，通分し分数式のままで
2種，分母払い整不等式にしてから1種，他は問のみで解法不明）である。
高次不等式でも符号表によるもののみである。
無理不等式はいずれもグラフ利用の解法となっている。
以上のようしたことから
(1) 1・2次不等式に続いて，高次不等式（大体3次まで）指導という順が
大勢のようで，分数不等式は後追し，反って，無理不等式が高次不等式に
次いで扱われる傾向であったようである。
(2) 解法は，高次・分数不等式は符号表で，無理不等式はグラフ利用でと固定
している。

(X) 昭和31～37年
採用数，数学I 15／20，（内，解法説明のあるもの6種），数学II 9／11，
（いずれも解法説明）。数学I・IIを通じて全く解法説明のないものが1種
ある。とり扱っているのは「分数不等式」，「高次不等式」等，そのものの
名称の項が多い。しかし，「二次不等式」，「分数方程式」，「無理方程式」
などもある。
それぞれについて分析すると，
(4) 分数不等式，採用数，数学I 9／20（内，問のみ6種），数学II 8／11
（いずれも解法説明あり）。

解法をみると
通分後，分数式のまいて符号表で………5種
分母払い整不等式にして符号表で………4種
不明確……………………2種
連立不等式では
分数不等式同士…………………3種
分数・無理不等式………………3種
分数・2次不等式………………2種
また，文字係数のものは4種で採用。
(9) 高次不等式，採用数，数学I 12/20（内，問のみ9種），数学II 7/11
（いずれも解法説明あり）。解法は
符号表で…………………………10種
グラフ利用……………………2種
因数の符号より………………1種
で，この三法を併用しているのが3種ある。
次に種類をみると
3次ののみ……………………数I 5種，数II 2種
4次ののみ……………………10，0
3・4次まで……………………6，4
3・4・5次まで……………………0，1
連立不等式は4種（数I・IIでそれぞれ2種づつ）で採用している。
(4) 無理不等式，採用数，数学I 1/20，数学II 9/11。解法は
グラフ利用のみ……………………4種
代数的解法のみ……………………1種
両方法…………………………5種
(4) その他
対数不等式……数I 8/20，数II 3/11
三角……………………1/20，6/11
以上のように
(1) 数学IIで指導，というのは大勢である。
(2) 分数不等式より高次不等式の採用が多い。
思いついたこと (2)

三原喜久男さんから田中義徳の『幾何学教科書』（明治18年8月29日発行、同20年2月町正再刊）を見ていたが、それははじめに載っている藤原真幸の序文がひじょうにおもしろかったので、次でそれを紹介してみた。

【仮名づかい】
名をとるままだが、仮名が多すぎて読みにくいといけないから、漢字をとしぐしやしておいた。なお、序文の内容は明治15年11月となっているから、これは町正本でよいものと出版に同じものがつついているのである。

今より20年（はたとせ）はかに前、海軍測量の要求に対して、長期屋といいる家には行きゃけりに、測量書を書かうが Kareになり、これにこそ思い、買いとのべて、家に帰り、見れば、直線は二つの点の間の近道であり、直線は左右心のままに連ぶことを得るものあり、と、たとえくもたなすきことのみ、ことありけりと袖を見て、かくては思い、十枚之内見つれば、直線二つ並ぶときにまた一つの直線のゆきあふときは、しかしこの定めあり、かんかくの現あり、書きてつれて、山の高さ、海の深さなど値るべき助こともたまうべくなく、末までかかることの

つまりければ、深くもえ読みきはめめて止むつ。これは美多系というひふ書きにてぞありける。美多系と、阿観陀の川にて、「読る」といふところ、コンストとは「わざ」といふところ、読るといふば測量といふべければ、さてそ測量書は書きたる者。その後、英学学び初むところ。このメイドコンストの、書きもの用に立つべくあらじと思ひしも、大に世に益あるを知りぬ。美多系コンストは英にせよドトレーとは言ふなり。さ
て、そのぶ、かかる技を捨てて顧みざりしを、ひたすら悔いなけりて、明治の初めに人に先立てて、わが攻玉鏡の数科に加へぬ。れば、わが国の同も、この技の書記をやくと、年たる思いしかれり。共に世の中事にかか

づらり、等聞にのみ打ちすな。このことごと田中ぬしぬ書きつづりきたまるへ
近藤の序文から、こんなことを考えた。

「思いついたこと(1)」の訂正
68ページ、69ページの「侯」はすべて「俁」とご訂正下さい。

「侯」というのは、松崎さんのお書かれたものに「七部鎮解説者俁後抄」とあり、「大人家事典」に「七部鎮解説者俁後抄」とあったところから出

発しているようです。

この二つから「侯」が一つの書名と推定できたのです。そして松崎さんのお書かれた字が「侯大人家事典」に落ちていたところから第2段の話がはじまります。これが実は「侯」であったというのです。この段の結論で

す。それを「侯」と書かれたのでは話の筋が通らなくなってしまいます。

-64-

-65-
山東派和算事蹟を偲ぶ会

福島県郡山市西田町土棚内出の橋本啓一郎氏宅は、和算家橋本東泉、慶明父子の出た家で、啓一郎氏は東泉の孫で、慶明の甥である。

福島県和算研究保存会では、橋本家蔵の和算書131冊が福島県立図書館に寄贈されたことについて、これを機に橋本家と相談の結果、東泉42回忌と慶明21回忌を記念し、和算書との相談の感謝状を奉納し、和算書寄贈の感謝を示すと記念品贈呈を行いたい。

平山詩、田中和雄、東栄栄人（ただしひとりの生存者）橋本明義、慶明門人代表、岩谷金三、橋本家家系親類大勢

橋本家系譜

九郎 九右衛門 九右衛門 九左衛門（東泉） （東泉）　（東泉）

慶明 箱子 箱子 箱子 箱子

九郎 九右衛門 九右衛門 九左衛門 九左衛門

キト氏は4月13日の研究会当日に出席され、当日の会合に出席のごとく助言ならびにお授けをいただいた。

慶明門人正吉（天明4年11月13日～明治13年11月13日、95才）九郎の長子。和算の系統は本多利明・内田五穎の両系に属する。三春藩に

-67-
仕えるかたる学を研究す。
数右衛門信成（嘉永6年～明治5年2月4日、50才）
幼にして父より数学を学ぶ。三番屋の剣術を学び、同家蔵の「立円密法・信州数法」を学ぶ。数右衛門は信成に数の指導を受けた。明治5年元年戊辰戦役にあたり、数右衛門の平定にあたると共に数の業績は大である。
啓三郎東京（弘化3年10月23日～昭和2年9月8日、84才）
生田目秀男は久隆。父なら数理を数理学と学び、後に三番の明徳堂にて佐久間藤軒より数学の指導を受け、数の業績をさらけ出すため、指導者となることの許可を得た。人材を広く東京にて養成した。各地にて数を奨励した算術や算術に東京の発展が見られる。
辰之助藤重（明治7年3月～昭和23年、75才）
東京の長男。父なら和算を学び、藤軒にて入門する。山東塾にて父を助け、彼の学問に贈る傾向が見られるため、藤重は数理に精通した。数理の執筆、算術の研究は彼の手にあたるものが少なく、藤重は数理への朝貞や、村河の寄付もたくさんの。また祖先のために氏神である高野神社の本殿や拝殿の建築（大正12年）も彼の手によるものである。
啓雲（明治20年～明治41年、22才）
東京の二男。非常に頭が良く、大学に進学する役を在学中病没。山東塾で数学を教授したことがある。
以上の如くに山東塾は藤軒の数理を持て、東京の教育に参入するが、そのために生存であった家も選手 коллを苦しったま、藤重の妻東山町の出高を困ったことに彼も前より考えていたため、藤重の役を担当数の和算書や手数見をもらったことである。
ところで土棚のある現在算額は次の通りである。
鹿島神社（西田町土棚内出）
鶴本鷹三郎社中：明治16年秋
高野神社（西田町土棚内出）
鶴本庄右衛門：寛政13年（？）
鶴本鷹三郎社中：明治20年
見度神社（西田町土棚内出）

"二本松市の生んだ和算家と顔影講演会"

1. 贅 旨
二本松市の生んだ和算家と顔影講演会における数理の業績について全国的にかぞえている数理史上の功績を紹介し、その後をたたえる。

2. 名 称
二本松市の生んだ「和算家と顔影講演会」

3. 主 催
二本松市
福島和算研究会
福島県数学教育研究会
日本数学史学会

4. 受 郎
福島県教育委員会

5. 日 目
昭和4年11月16日（日）
第1部 午前10時～12時（一般市民を対象とする）
第2部 午後1時～3時半（数学教師および受講生を対象とする）
6. 場所
福島県二本松市桜戸 福島県立二本松工業高等学校
TEL 2-0960 バス 福島交通 二本松工高前下車

7. 講師
前東北大学教授 理学博士 平山 和夫
前橋工業短期大学助教授 下平 和夫
(日本数学史学会運営委員)

8. 内容
第1部 午前（一般市民を対象とする）
1. 二本松市の生んだ和算家
 磯村吉雄，三宅常隆，渡辺東岳について 平山 和夫
2. 和算と二本松
3. 二本松に奉納された算術に基づく（研究報告）
 福島工業高等専門学校教授 佐伯 伸雄
第2部 午後 （小、中、高校数学教師者および一般数学愛好者を対象とする。）
1. 数学の現代化について
 福島県立二本松工業高等学校長 藤田 重千代
2. 方陣について 平山 和夫
5. 算木，算盤（和算の計算具）による計算を平山，下平両氏によって実演する。

9. その他
1. 会場には和算書各種算木，算盤，数学史地図，二本松市出身渡辺東岳
 先生の著書等を多数展示する。
2. 方陣研究の著書は未版されていないので本講演会においては講演者に
 よる講演印刷物（15頁）を用意している（希望者は1部1,000円で頒布）
3. なお，方陣はいわゆる魔方陣のことで二本松と会津若松は我が国にお
 ける方陣研究の発祥地である。講演者は方陣研究の現状をまずに報告する
 と同時に学校教育の教材として豊富な資料を提供しようと目論んでいる。
4. 会費は無料
5. 日程（10時〜12時）

新入会員紹介（全員番号，生年月日，①住所，②出身校，③勤務先，④研究
題目）

139 長沢一松（M.41.319）①福島市波利字給馬91②福島県工業銀行
③福島県和算史
140 小林賢二 ①群馬県渋川市下郷1318
141 潮川秀雄（8.2.6.4）①大阪府豊中市上野7丁目196-11②北大理
 学部数学科 ③大阪府立島上高校 ④北野天狗窓の算帳
142 中村幸男 ①松本市御殿山2-24-29
143 開成恵治（8.4.7.6）①町田市高ケ塚住宅A445号 ②東京理科大学
 数学科 ③静岡県四谷第二小
144 丸山哲郎（8.4.123）①兵庫市広域1-2-21-14②東北大数学科
③静岡大工業姫
145 宮本敏雄（T.2.8.22）①東京田無市南町5-24-5②大阪大学数学科
③国際商科大学
146 船原喜之助（8.8.1026）①島根県酒呑町仁摩町馬路 ②島根県立高校
 温泉分校 ③古ソボン 那覇の和算家
147 藤田輝男（T.9.1.29）①神戸市垂水区港通2-6-3 ②広島高師理科
 一部 ③兵庫県教育委員会

編集後記
この『数学史研究』のバックナンバーの中に数学史録に関する論文はほとんど
見当たらない。吉田氏の論文はどのようにしてみても価値あるものといえう。過去の事実をせんざいしていくと誰れでも好奇心のとりこになって，
しらざしらずのうちに狭い袋小路に入り込んでしまがちである。大切なことは、時々その袋小路から脱出して、本道のむくところを見極めなければならないことだと思う。

お年寄りの退屈しのぎの過去のせんざくは決して歴史の本道ではない。新しく歴史の研究に入ろうとする人たちは、このようなものが歴史だと思いませるようなことになるかもそれかもしれませんが、大部分の若人は歴史だから遠ざかってしまうにちがいない。

私たちは数学史学の価値の再認識とその方法について大切に考え直さなければならないのではないかと思う。そのためにはすべての研究者が広い視野と識見をもつことが必要である。「もっと勉強しなければならない」といつも自分にいささかされているのだが、なかなか思うようにならない。生活に追われて自分の時間が十分得られないこともあるが、私は道路からの刺激のないことが大きな理由の一つだと思う。私自身、自分の研究についてこの数年来離れからも批判をうけたことがあるのである。「数学史研究」は研究の発表の場であるが、同時に、研究者相互の意見の交換の温場でなければならないと思う。この意味で、この会誌に掲載された論文記事について、できるだけ多くの会員からの建設的意見をいただきたいものである。（片野）
三版出 来
日本数学の新知識

下平和夫・荻野公剛共著

B6判上製図入・200頁 口絵 30頁・定価530円

日本数学史料における常識的なことから20項目について、写真版を登場に入れて、わかりやすく、興味深く述べたもの、各項目ごとに「研究者のための参考資料」「この問題を考えましょう」の欄を設け高校・短大などの補助教材としても十分役立つよう苦心編集した。＜口絵写真30余図、本文80余図＞

目次
1 週 日の数学の発達をみましょう
2 週 竹束問題と考えてみましょう
3 週 一度は作ったことのあるフィードバックの問題
4 週 案外知られていない算盤の話
5 週 日本にあった数学史のかずかず
6 週 ほとんど知られていない日本の数学史
7 週 ピタゴラスの定理をご存知でしょう
8 週 七竜子立とは何でしょう
9 週 初期の算術とも
10 週 ご存知ですか日本独特の出題形式
11 週 江戸時代にはどんな数学記号を使用したでしょう
12 週 だれでも知っている円周率とは
13 週 思わず場所にかかっている数学の問題
14 週 こんなにもある数学の家元
15 週 食算を楽しみましょう
16 週 せんと数の問題
17 週 算子検は得まってでしょう
18 週 この図形は一筆書きできるでしょうか
19 週 失われゆく数算
20 週 これだけは読んでもらいたい日本数学史の

会田算左衛門安明

平山謙・松岡元矩編

会田算左衛門安明百五十年祭を記念して出版されたものの、算左安明の伝記、学説、師、門弟、著書、三上義夫の遺稿について詳述。なお自著『自在物語』と著者『算法天下正指南』（復刻したもの）を全部収録しており、その解説を下平和夫氏が約50頁にわたって親切に問題を解いたもの。

A5版上製 350頁、安明肖像一葉、口絵8頁、定価 1,500円

平山謙、松岡元矩編

山 形 の 算 額
山形県の算額（現存するもの、かつて掲げられたものなどを含む）25点を校訂編集したもの。B5判 印刷、57枚 和紙 値価300円

松岡元矩、千喜良英二編

山 形 の 算 額（続）
「山形の算額」に従った算額16点を採録している。なお、山形県算額家名帳（山形県の算額805名につき、その生没年月日、住地、著書算額、算額、紀録などを記載）を付す。B5判 印刷、和紙、原価500円

道義正編

新 潟 の 算 額
新潟県下の算額につき、現存するものの、現存しないものを採録。*B5判 印刷、和紙、原価350円

道義正・八田健二著

新 潟 の 算 額 解 説
算額について、一つ一つ振気解説、現代的解説、他方子実者著者小伝なども付す。*B5判 印刷、和紙、原価122頁、原価950円

桑原秀夫著

仏 神 社 の 洋 算 算 額 と 井 村 剛 治 先 生 の 生 涯
仏教時代の創建になる仏教神社の算額のうち、明治9年に井村剛治によって作製された仏教算額を紹介し、井村剛治の生涯について述べたもの。*B5判 印刷、原価250円

桑原秀夫著

算 額 を 見 て
算額調査に東北西進、足跡到是るところ考案の紀行文、昭和41年、42年の2年間の記録である。*B5判 印刷100頁、原価350円

桑原秀夫著

高野の年月日（仏教神社の算額）
兵庫県三田市に伝来の仏教算額、その沿革者高野内市左衛門について調べたもの。著者著作見価予定のシリーズの一、*B5判 印刷、原価250円

荻野公剛編著

算額に関する研究文献解説 第1巻～第4巻
*B5判、各120頁、印刷各巻、原価400円

東京都新宿区戸塚町3の212 富士短期大学内 電話（368）2254 日本数学史学会 振替東京20022